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LOW TEMPERATURE OPTICAL ABSORPTION BY
MAGNONS IN KNiF3 AND NiO SINGLE-CRYSTALS

N. MIRONOVA, V. SKVORTSOVA AND A. KUZMIN

Institute of Solid State Physics, University of Latvia,
Kengaraga street 8, LV-1063 Riga, Latvia

AND

I. SILDOS AND N. ZAZUBOVICH
Institute of Physics, Riia street 142, EE-2400 Tartu, Estonia

Abstract. Optical absorption spectra of KNiF3 and NiO stoichiometric
single-crystals were measured at 5 K in the range from 4000 to 50000 cm™!.
The observed bands are interpreted based on the energy levels diagram for
Ni?* (34®) ion in a cubic crystal field. The crystal-field parameter Dgq is
equal to 766 cm™! in KNiF3 and 890 cm™! in NiO. Particular attention is
paid to the band due to the magnetic-dipole 3Agg(F)—3T(F) transition,
located at 7700 cm™! in KNiF3 and at 8900 cm™! in NiQ. We show that the
energy difference between the two peaks, located at the low energy side of
the band, is related to the zone-center (k = 0) one-magnon energy, so that
the low-energy peak is attributed to the pure exciton transition, whereas
the high-energy peak to the exciton-magnon excitation. The estimated one-
magnon energies are 25 +5 cm™! in KNiF3; and 39 + 3 cm™! in NiO.

1. Introduction

KNiF3 and NiO have cubic perovskite and rock-salt structures, respec-
tively, in which Ni%* ions are located at the centre of regular NiFg and
NiOg octahedra. Both compounds exhibit antiferromagnetic (AF) ordering
(S = 1) below the Néel temperature (Ty = 246 K [1] (253 K [2, 3, 4],
275 K [5]) for KNiF3 and T = 523 K for NiO [6]). The AF structure is
mainly determined by dominating superexchange interactions in the Ni%t—
F~-Ni?t (J; ~ 70 cm™! [2, 3, 4, 7]) and Ni>t-0%~-Ni?* (J; ~ 150 cm™!
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[8, 9, 10]) linear atom chains. Besides, 90°-superexchange Ni2*—-02~-Nj2+
interactions (J2 ~ 24 cm™! [11]) contribute in NiO as well.

The two- and four-magnon Raman scatterings have been observed in
both compounds [8]. The two-magnon peak at ~ 750 cm™! in KNiF3 and
at ~ 1560 cm™! in NiO is exceptionally strong and detectable up to T [8].
The four-magnon peak at ~ 1270 cm™! in KNiF3 and at ~ 2800 cm™! in
NiO is very weak even at T'= 1.5 K [8].

At the same time, the one-magnon Raman scattering has been de-
tected, to our knowledge, only in NiO: its frequency is equal to 38 cm™!
at T = 0 K [6]. This value agrees well with the energy of the antiferro-
magnetic resonance (AFMR) [12], observed in NiO in far-infrared (IR) at
36.6 cm~!. The one-magnon excitations were also found in the fine structure
of near-IR optical absorption in NiO, where two narrow lines at 7810 and
7849 cm~! have been observed in the range of the magnetic-dipole transi-
tion 3Agy(F)—3T2¢(F) at 5 K [13]. The two lines were attributed to pure
exciton and exciton-magnon transitions, respectively, and are separated by
3943 cm™! [13]. Such interpretation is supported by IR absorption spectra
of NiO:Co [14], where the intensity of the exciton-magnon transition de-
creases upon doping with Co, whereas the difference between exciton and
exciton-magnon transitions increases in agreement with the AFMR results.

No AFMR measurements exist to our knowledge for KNiF3. Therefore,
we were interested to estimate the one-magnon energy in KNiF3 from low
temperature IR absorption spectra.

2. Experimental

Experiments were performed on a transparent bright-green single-crystal
sample of KNiF'3. A green-colored NiO single-crystal, grown by the method
of chemical transport reactions on the (100) face of a MgO crystal, was used
for comparison [15]. Optical absorption spectra of KNiF'3 and NiO single-
crystals were measured at 5 K in the energy range from 4000 to 50000 cm ™!
using the Jasco spectrometer (Model V-570).

3. Results and Discussion

The optical absorption spectrum of KNiF3 (Figure 1) consists of several
bands due to the d—d-transitions, labelled according to the energy levels di-
agram for Ni%t (d®) ion in a cubic crystal field (Figure 2). The bands in UV
and visible spectrum are the electric-dipole of nature, whereas the near-IR
band at ~ 8000 cm~! corresponds to the magnetic-dipole transition [15].
The difference between the absorption spectra of KNiF3 and NiO [15, 16]
can be estimated from the calculated Tanabe-Sugano diagrams (Figure 2).
It manifests mainly as a change in the order of 3Agy(F)—3T14(F) and
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Figure 1. The absorption spectrum of KNiF3 at 5 K. The electronic transitions are
indicated.

3Agg(F)—'Eq4(D) bands: in KNiF3 the Dg value is smaller than the cross-
point energy of 'E,(D) and 3T4(F) terms, whereas it is larger in NiO.

The crystal-field parameter Dgq, estimated from the center of gravity of
the 3Agy(F)—3To4(F) band, is 766 cm™" in KNiF3. This value is smaller
than that (890 cm™!) in NiO, in spite of the Ni2t—F~ bonds being by
~ 0.08 A shorter than the Ni2t—02~ bonds. Using Anderson’s theory with
dominant o-bonding contribution (which is the case of KNiF3 and NiO),
one can relate the antiferromagnetic exchange J; to the Dq parameter and
the Coulomb interaction for the Ni 3d electrons Ueg as J; = (10Dq/3)?/Uest
[17]. The value of Ueg for NiO was found to be ~ 7.5 eV [10], and, thus, we
estimate Ugg for KNiF3 to be =~ 11.7 eV. The larger value of Ue suggests
that the 3d electrons in KNiF3 are more localized than in NiO, and the
Ni2*—F~ bonding has higher degree of ionicity.

At the low energy side of the 3Agy(F)—3Tog(F) band, two peaks (de-
noted A and B in Figure 3) can be detected at 6799 and 6824 cm™! in
KNiF5 and at 7810 and 7849 cm™! in NiO. In the latter case, they are very
strong and well separated. There have been several attempts to explain the
origin of the peaks A and B. They have been attributed to the exchange
splitting of the excited 3Ty, state in KNiF3 [5]. Later the spin-orbital split-
ting was suggested as an explanation, however, it was not consistent with
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Figure 2. Calculated energy levels (Tanabe-Sugano) diagrams for Ni** (3d®) ion in
KNiF3 (Dg = 766 cm™', B = 874 cm™!, C = 4733 cm™!) and NiO (Dq = 890 cm™},
B =780 cm™!, C = 3432 cm™!). The crystal-field (Dq) and Racah (B and C) parameters
were determined from KNiF3 and NiO absorption spectra. The goint corresponding to
the transition 3A24(F)—'Eg(D) is shown by 1 and to 3Asg(F)—3T14(F) by 2.

theoretical calculations showing that there should be four zero-phonon lines
instead of two [18]. Recently, the origin of the doublet structure in NiO was
attributed to spin-orbital interaction, rhombohedral exhange striction and
an orthorhombic transverse molecular field due to antiferromagnetic long-
range order [16].

The difference (39 + 3 cm™!) between the two lines in NiO agrees with
the energy of the zone-centre (k = 0) one-magnon excitation, which was
observed previously in zero magnetic field AFMR spectra at 36.6 cm™!
[12]. Such interpretation is supported by IR absorption measurements of
NiO single-crystals doped with up to 5% of Co ions [14]. It was found [14]
that upon an increase of the cobalt concentration, the energy difference be-
tween two zero-phonon peaks at 7828 and 7864 cm™! and their half widths
decrease. Besides, the intensity of the high-energy peak decreases drasti-
cally. Such a behaviour of the two IR absorption peaks correlates nicely
with that observed for the AFMR lines of Co?*-doped NiO in [12]. There-
fore, the low-energy peak was attributed to the pure exciton transition,
whereas the high-energy peak to the coupled exciton-magnon excitation
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Figure 3. The 3Azy(F)—3T2,(F) magnetic-dipole transition band in KNiF3 and NiO
at 5 K. The energy scale of the absorption spectrum for NiO was shifted for comparison
by -1020 cm™! to compensate the difference in the Dg values. The intervals between A
and B peaks are ~ 39 cm™! for NiO and ~ 25 cm™! for KNiFs.

[13]. Our temperature and polarization dependent measurements of IR op-
tical absorption in NiO also support such interpretation [19]. We suppose
that similar processes are responsible for the origin of the lines at 6799 and
6824 cm™! in KNiF3. They are less separated, compared to NiO, due to a
twice smaller value of the Néel temperature for KNiF'3.

4. Summary and Conclusions

A study of low temperature (5 K) optical absorption of KNiF3 and N10
stoichiometric single-crystals in the energy range from 4000 to 50000 con™

is presented. The obtained absorption bands are interpreted in accordance
with the energy levels (Tanabe-Sugano) diagrams for Ni2* (3d®) ion pa-
rameters Dq, B and C being optimized to fit the experimental data. Two
peaks at the low energy side of the band, ascribed to the magnetic-dipole
3A24(F)—3To4(F) transition, are discussed in details. The energy difference
between the two peaks is found to correspond to the zone-centre (k = 0)
one-magnon energy, so that the low-energy peak is attributed to the pure
exciton transition, whereas the high-energy peak to the exciton-magnon
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excitation. The estimated one-magnon energies are 25+ 5 cm™! in KNiF3
and 39+ 3 cm™" in NiO. The value for NiO is consistent with experimental
data of AFMR [12] and Raman scattering [6].
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