Journal of Luminescence 182 (2017)

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Full Length Article

Excitation and emission spectra of $LaInO_3$ -based solid solutions doped with Sm^{3+} , Sb^{3+}

E.K. Yukhno^a, L.A. Bashkirov^{a,*}, P.P. Pershukevich^b, I.N. Kandidatova^a, N. Mironova-Ulmane^c, A. Sarakovskis^c

^a Belarusian State Technological University, 13a Sverdlova Str., Minsk 220006, Belarus

^b Stepanov's Institute of Physics, Belarusian National Academy of Sciences, 68 Nezavisimosti Ave., Minsk 220072, Belarus

^c Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia

ARTICLE INFO

Article history: Received 23 November 2015 Received in revised form 18 July 2016 Accepted 11 October 2016

Keywords: LaInO₃:Sm³⁺ Sb³⁺ Solid solution Photoluminescence Sensitizer

ABSTRACT

X-ray analysis showed that all the ceramic samples of La_{1-x}Sm_xInO₃ (0.010 $\leq x \leq 0.025$) solid solutions were single-phased but the samples of nominal composition of LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ contained a small amount of impurity phase of LaSbO₃-based solid solutions. It was established that La_{0.98}Sm_{0.02}InO₃ solid solution under the excitation of 275 nm and 320 nm exhibits the strongest photoluminescence among La_{1-x}Sm_xInO₃ solid solutions with 0.010 $\leq x \leq 0.025$. Photoluminescence bands located in wavelength ranges of 550–580 nm, 585–625 nm and 630–680 nm exhibit 2–3 clear maxima each. According to the locations of these maxima we calculated the magnitudes of Stark splitting of ⁶H_{5/2}, ⁶H_{7/2}, ⁶H_{9/2} multiplets of the main ⁶H term of Sm³⁺ ion by crystal field of La_{1-x}Sm_xInO₃ solid solutions with orthorhombically distorted perovskite structure. It was established that the intensity of PL spectra obtained at λ_{ex} =320, 405 and 470 nm is significantly higher for sample of La_{0.98}Sm_{0.02}InO₃ nominal composition than that of La_{0.98}Sm_{0.02}InO₃ solid solution. It could be explained by sensitizing effect of Sb³⁺ ions on Sm³⁺ ions photoluminescence or by higher PL intensity of Sm³⁺ ions of impurity phase than of LaInO₃ matrix.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past ten years much attention was drawn to optical properties of perovskite LaInO₃-based solid solutions doped with RE ions (RE= Pr^{3+} , Sm³⁺, Eu³⁺, Tb³⁺) and/or Bi³⁺ ion because of their visible light emission [1-4]. Substitution of La³⁺ ions by Bi³⁺ ions in LaInO₃: Eu³⁺ shows sensitizing effect on Eu³⁺ luminescence [3]. Sb^{3+} ions have $5s^2$ electron configuration similar to $6s^2$ electron configuration of Bi³⁺ ions. So Sb³⁺ ions are expected to be efficient sensitizer of RE ions. Luminescent properties of Sb³⁺ and Bi^{3+} ions in *LnBO*₃ (*Ln*=Sc, Y, La, Gd, Lu) were investigated in [5–10]. In these compounds Sb^{3+} and Bi^{3+} ions are located in Ln^{3+} ions sublattice. Bi³⁺ ions are sensitizers of Eu³⁺ luminescence in (Y, Gd)BO_3 and energy transfer is $Bi^{3\,+}\!\rightarrow\!Gd^{3\,+}\,\ldots\,Gd^{3\,+}\rightarrow$ Eu^{3+} [6,7]. At the same time in the work [8] no energy transfer between Sb^{3+} ions and Eu^{3+} ions in YBO₃-based solid solution was observed and both Sb³⁺ and Eu³⁺ ions acted as co-activators. There is no research devoted to luminescent properties of Sb³⁺ ions located in In³⁺ ions sublattice of LaInO₃. Such a substitution is

* Corresponding author. *E-mail address*: bashkirov@belstu.by (L.A. Bashkirov). possible because Sb³⁺ ionic radius is only 0.02 Å less than that of In³⁺ ($r_{In^{3+}} = 0.92$ Å [11]) and 0.14 Å less than that of La³⁺ ($r_{La^{3+}} = 1.04$ Å [11]). In the present work we investigate excitation and emission spectra of LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ and La_{1-x}Sm_xInO₃ (0.010 $\le x \le 0.025$) solid solutions. All LaInO₃-based solid solutions were synthesized by solid-state reaction method and had the structure of orthorhombically distorted perovskite.

2. Experimental

LaInO₃ indate and La_{1-x}Sm_xInO₃ (x=0.010, 0.015, 0.020, 0.025), LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ solid solutions ceramic samples were synthesized by solid-state reaction method using mixture of La₂O₃ (99.99%), Sm₂O₃ (99.99%), In₂O₃ (99.99%) and Sb₂O₃ (99.99%) oxides. La₂O₃ and Sm₂O₃ were preheated at 1273 K for 1 h. Stoichiometric amounts of the reactants were mixed with the aid of ethanol, ground in planetary mill (Pulverizette Fritch) in cups with zirconia balls and then pressed in pellets (D=25 mm, h=5-7 mm). The pellets were sintered at 1523 K for 6 h on the Al₂O₃ substrate. The pellets of different composition were not in contact with each other. In order to prevent the pellet-substrate

2

interaction the pellets were separated from the substrate by thin powder layer of the same composition. Then the pellets were ground, milled and pressed in bars ($5 \times 5 \times 30$ mm). The bars were finally sintered at 1523 K for 6 h. The compounds were characterized by powder X-ray diffraction (XRD) analysis (Bruker D8 Advance) at room temperature using $CuK\alpha$ radiation. Crystal structure parameters of the investigated compounds have been calculated using X-ray structure tabular processor (RTP). SEMimages of indates were obtained with scanning electronic microscope JEOL JSM-5610LV with assistance of Energy Dispersive X-ray Spectrometer JED 22-01. Excitation and emission spectra of ceramic samples were recorded at 300 K using automatic spectrofluorometer SDL-2 composed of MDR-12 high-aperture excitation monochromator and MDR-23 recording monochromator at the Institute of Physics of the National Academy of Sciences of Belarus. Xe-lamp DKsSh-120 was used as excitation source.

3. Results and discussion

XRD patterns of LaInO₃ indate and La_{1-x}Sm_xInO₃ (*x*=0.010, 0.015, 0.020, 0.025) solid solutions (Fig. 1a) showed that all the samples were single-phased and had the structure of orthorhombically distorted perovskite (GdFeO₃-type, *a* < *c*/ $\sqrt{2}$ < *b* [12]). Crystal structure parameters *a*, *b*, *c* and crystal cell volume *V* are presented in Table 1. Samples with nominal composition of LaIn_{0.98}Sb_{0.02}O₃ and La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ had on their XRD patterns (Fig. 1a) not only the peaks corresponding to main perovskite phase but also one impurity peak of small intensity (*d*=3.104 Å, 2 Θ =28.76° for La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ sample; *d*=3.111 Å, 2 Θ =28.70° for LaIn_{0.98}Sb_{0.02}O₃ sample). This reflex is probably referred to not-reacted Sb₂O₃ oxide or to intermediate

Table 1

Cell parameters (*a*, *b*, *c*), cell volume (*V*) and orthorhombical distortion degree (ε) for LalnO₃ and LalnO₃-based solid solutions doped with Sm³⁺, Sb³⁺.

Composition	Cell pa	c/√2,Å				
	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³	$\epsilon \cdot 10^2$	
LaInO ₃	5.738	5.953	8.227	281.0	3.75	5.817
La _{0.99} Sm _{0.01} InO ₃	5.732	5.943	8.228	280.3	3.68	5.818
La _{0.985} Sm _{0.015} InO ₃	5.731	5.944	8.228	280.3	3.72	5.818
La _{0.98} Sm _{0.02} InO ₃	5.732	5.944	8.223	280.2	3.70	5.814
La _{0.975} Sm _{0.025} InO ₃	5.724	5.939	8.224	279.5	3.76	5.815
La _{0.98} Sm _{0.02} In _{0.98} Sb _{0.02} O ₃	5.731	5.932	8.229	279.8	3.51	5.819
LaIn _{0.98} Sb _{0.02} O ₃	5.735	5.937	8.234	280.3	3.52	5.822

LaSbO₃ compound which is formed during synthesis. The most intensive reflexes *d* parameters for that samples are [13,14] 3.151 and 3.196 Å, respectively. In order to identify the origin of the impurity phase in agate mortar there was made a mixture of $La_{0.98}Sm_{0.02}InO_3$ and Sb_2O_3 compounds with Sm^{3+} : Sb^{3+} ions ratio 1:1. On the XRD pattern of the mixture no peak of Sb₂O₃ phase was observed. The LaIn_{0.98}Sb_{0.02}O₃ sample was additionally sintered at 1523 K for 6 h. The impurity reflex intensity on the XRD pattern of additionally sintered sample did not decreased and remained the same (Fig. 1a). So the impurity reflex is probably referred to LaSbO₃ and La_{1-v}Sm_vSbO₃ solid solutions on its base. The ratio if intensities of the highest reflexes of the impurity phase $(2\Theta = 28.70^{\circ})$ and the main phase $(2\Theta = 30.65^{\circ})$ shows that in the LaIn_{0.98}Sb_{0.02}O₃ sample the amount of impurity phase is about 5% of the main phase. On SEM-images of La_{0.98}Sm_{0.02}InO₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃, LaIn_{0.98}Sb_{0.02}O₃ ceramic samples (Fig. 1b) no sign of other phase was observed. Grain size was estimated to be about 0.5-3 µm.

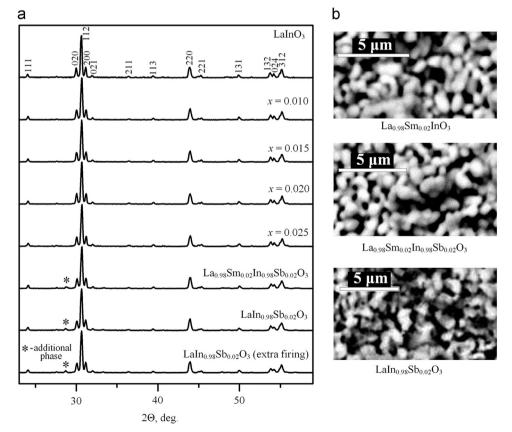
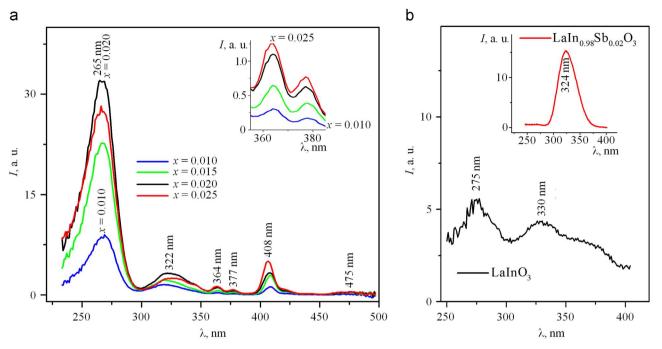



Fig. 1. XRD patterns of LalnO₃, $La_{1-x}Sm_xlnO_3$ (x=0.01, 0.015, 0.02, 0.025), $La_{0.98}Sm_{0.02}ln_{0.98}Sb_{0.02}O_3$, $Laln_{0.98}Sb_{0.02}O_3$ (a); SEM-images of $La_{0.98}Sm_{0.02}lnO_3$, $La_{0.98}Sm_{0.02}lnO_{0.98}Sb_{0.02}O_3$ and $Laln_{0.98}Sb_{0.02}O_3$ ceramic samples (b).

E.K. Yukhno et al. / Journal of Luminescence 182 (2017) ■■■-■■■

Fig. 2. Excitation (λ_{mon} =602 nm) spectra of La_{1-x}Sm_xInO₃ (x=0.01, 0.015, 0.02, 0.025) solid solutions (a); excitation spectra of LaInO₃ (λ_{mon} =433 nm) and LaIn_{0.98}Sb_{0.02}O₃ (λ_{mon} =450 nm, inset) (b).

Since LaInO₃ and its solid solutions formation mechanism has not been investigated let us pay attention to some conditions of its synthesis by solid state reactions method induced by reciprocal or irreciprocal electrons or cations and oxygen ions diffusion. Solid state reactions proceed on reactants contacting particles interface. In present work solid state synthesis of LaInO₃-based solid solutions (e.g. La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃) was performed by sintering on air at 1523 K of La₂O₃, In₂O₃, Sm₂O₃, Sb₂O₃ oxides mixture of certain molar ratios. After milling the mixture contains various pairs of contacting particles referred to identical or different oxides. Let us suppose that a certain volume contains of reactants particles equal number of moles of certain oxide. The number of pairs of contacting particles of identical or different oxides depends on number of each oxide particles. In starting mixture for La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ solid solution synthesis the number of La₂O₃, In₂O₃ particles is approximately 49 times higher (0.98/0.02) than Sm₂O₃, Sb₂O₃ particles. Therefore, in such a mixture the number of La₂O₃–In₂O₃ contacting pairs is many times higher than that of La₂O₃–Sm₂O₃, La₂O₃–Sb₂O₃ contacting pairs. The number of Sm₂O₃–Sb₂O₃ contacting pairs is many times lower than that of La₂O₃–Sm₂O₃, La₂O₃–Sb₂O₃, Contacting pairs. The number of Sm₂O₃–Sb₂O₃ contacting pairs. The number of Sm₂O₃–Sb₂O₃, La₂O₃–Sb₂O₃, In₂O₃–Sm₂O₃, and In₂O₃–Sb₂O₃ contacting pairs. Due to that during sintering of La₂O₃, In₂O₃, Sb₂O₃ oxides mixture designed for La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ solid solution synthesis the probability of intermediate SmSbO₃ compound and La_{1-y}Sm_ySbO₃ solid solution formation is much lower than that of LalO₃ compound, LalnO₃-based solid solutions, SmInO₃ compound and In_{2-y}Sb_yO₃ solid solution. Hence, despite of a small amount ($\approx 5\%$) of impurity phase of LaSbO₃ or

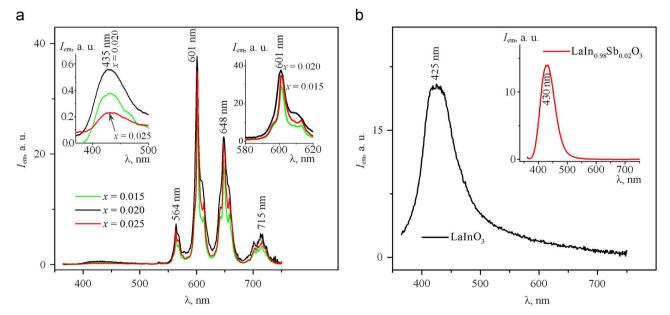


Fig. 3. Emission ($\lambda_{ex}=275$ nm) spectra of La_{1-x}Sm_xInO₃ (x=0.015, 0.02, 0.025) solid solutions (a); emission spectra of LaInO₃ ($\lambda_{ex}=330$ nm) and LaIn_{0.98}Sb_{0.02}O₃ ($\lambda_{ex}=320$ nm, inset) (b).

E.K. Yukhno et al. / Journal of Luminescence 182 (2017)

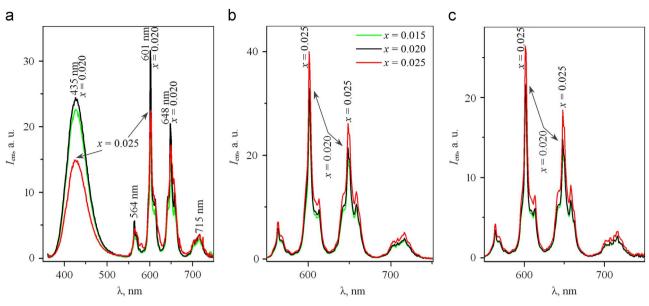


Fig. 4. Emission spectra of $La_{1-x}Sm_xInO_3$ (x=0.015, 0.02, 0.025) solid solutions with λ_{ex} =320 nm (a), 405 nm (b), 470 nm (c).

La_{1-y}Sm_ySbO₃ in a sample of La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ nominal composition, only insignificant part of Sm³⁺, Sb³⁺ ions transfers to impurity phase. Therefore, impurity phase existence in Sb³⁺ containing samples only insignificantly decreases set Sm³⁺, Sb³⁺ ions concentration in LaInO₃-based solid solutions. This conclusion is confirmed by Table 1 data showing that crystal structure parameters *a*, *b* and crystal cell volume *V* of solid solutions of nominal composition of La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ and LaIn_{0.98}Sb_{0.02}O₃ are insignificantly less than those of undoped LaInO₃, as Sm³⁺, Sb³⁺ ionic radii are insignificantly less than La³⁺, In³⁺ ionic radii. That proves that during LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ synthesis Sm³⁺ and Sb³⁺ ions were placed into crystal structure of LaInO₃ matrix so the main share of Sm³⁺ and Sb³⁺ ions is located in main phase and not in impurity phase.

Looking at Fig. 2a it is possible to conclude that the excitation bands intensity in excitation spectra of $La_{1-x}Sm_xInO_3$ (x=0.010, 0.015, 0.020, 0.025) solid solutions with $\lambda_{mon}=602$ nm depends on Sm³⁺ ions conce ntration. The strongest excitation band has a maximum at 265 nm ($\nu=37736$ cm⁻¹) and belongs to near UV region. For the excitation bands with maxima at 265 nm and 322 nm the highest intensity is observed for $La_{1-x}Sm_xInO_3$ solid solution with x=0.020 (Fig. 2a). For these bands of $La_{0.98}Sm_{0.02}InO_3$ sample their full-widths at the half maximum (FWHM) were 29 nm and 37 nm, respectively. For the excitation bands with maxima at 364 nm, 377 nm, 408 nm and the highest intensity is observed for $La_{1-x}Sm_xInO_3$ solid solution with x=0.025 (Fig. 2a, inset). According to [1] strong excitation band with

maximum at 265 nm is caused by the oxygen (2p) to samarium (4*f*) charge transfer transition $(O^{2}-Sm^{3+})$. In present work excitation spectra of undoped LaInO₃ with λ_{mon} =433 nm was obtained (Fig. 2b). On that spectrum there is a band with maximum at λ_{max} =275 nm that differs slightly from the maximum of $\lambda_{max} = 265 \text{ nm on excitation spectra of } La_{1-x}Sm_xInO_3$ (Fig. 2a). This band absents on excitation spectrum of LaInO₃ obtained in [2] and could be explained by Sm³⁺ ions contamination but the results of X-ray fluorescent analysis with high-energy X-rays excitation show that undoped LaInO₃ contains no Sm³⁺ ions. According to [1] excitation bands with maxima at 364 nm, 377 nm, 408 nm are due to 4f-electrons of Sm^{3+} ion transitions from the ground ${}^{6}H_{5/2}$ level to the excited levels ${}^{4}D_{15/2}$, ${}^{4}L_{17/2}$ and ${}^{4}K_{11/2}$, respectively [1]. In the excitation spectra of $La_{1-x}Sm_xInO_3$ (x=0.010, 0.015, 0.020, 0.025) solid solutions there is a well-defined band with a maximum at 322 nm (Fig. 2a). This band intensity depends on Sm^{3+} ions content in $La_{1-x}Sm_xInO_3$. Similar weak band was shown in the excitation spectrum of La_{0.98}Sm_{0.02}InO₃ solid solution presented in [1] its nature is not understood. On excitation band of undoped LaInO₃ (Fig. 2b) obtained in present work there is a wide asymmetrical band with blurred maximum at 330 nm (Fig. 2b). Similar symmetrical excitation band with maximum at 328 nm and FWHM of ≈ 40 nm was observed in [2] for LaInO₃ but was not observed for LaAlO₃: Sm^{3+} [15]. Hence, the origin of this band is electronic transition in LaInO₃ involving In³⁺ ions.

Photoluminescence (PL) spectra of $La_{1-x}Sm_xInO_3$ (x=0.015, 0.020, 0.025) solid solutions under the excitation at 275 nm

Table 2

Emission bands maxima wavelengths (λ_{em}) and energies (ν_{em}), Stark splitting magnitudes for La_{1-x}Sm_xInO₃ with x=0.02, 0.025, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ solid solutions after excitation of λ_{ex} =275 nm.

La _{0.98} Sm _{0.02} InO ₃		La _{0.975} Sm _{0.025}	InO ₃	$La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_{3}$			
λ _{em} , nm	ν_{em} , cm $^{-1}$	$\Delta v_{\rm st}$, cm ⁻¹	λ_{em} , nm	ν_{em} , cm ⁻¹	$\Delta v_{\rm st.}$, cm ⁻¹	λ_{em} , nm	$\nu_{\rm em}$, cm $^{-1}$
435	22989	_	430	23256	_	434	23042
564	17730	93	564	17730	124	564	17730
567	17637		568	17606		567	17637
601	16639	192	601	16639	326	601	16639
608	16447		613	16313		613	16313
642	15576	144	643	15552	120	643	15552
648	15432	211	648	15432	234	648	15432
657	15221		658	15198		658	15198
715	13986	-	715	13986	-	716	13966

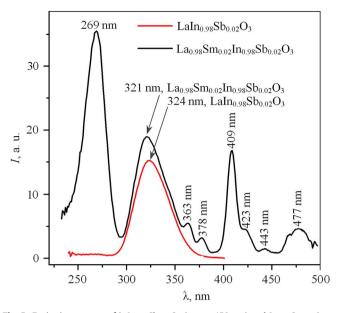


Fig. 5. Excitation spectra of Laln_{0.98}Sb_{0.02}O₃ (λ_{mon} =450 nm) and La_{0.98}Sm_{0.02}In_{0.98} Sb_{0.02}O₃ (λ_{mon} =602 nm) solid solutions.

(Fig. 3a), 320 nm, 405 nm, 470 nm (Fig. 4) were measured. In the visible green-red region (550-750 nm) these spectra consist of four bands. For those bands their maxima in $La_{1-x}Sm_xInO_3$ (x=0.020, 0.025) solid solutions under the excitation at 275 nm are presented in Table 2. Additional luminescence band located between 400 and 500 nm is present in the PL spectra of La_{1-x}Sm_xInO₃ solid solutions (Fig. 3a, inset, Fig. 4 a). This band intensity depends on excitation wavelength and Sm³⁺ ions content. On PL spectrum of undoped LaInO₃ (Fig. 3b) there is a band with maximum at 425 nm. Similar symmetrical band with maximum at 426 nm and FWHM of \approx 53 nm was observed in [2]. On PL spectra (λ_{ex} =252 nm) of LaGaO₃ solid solution doped with 1% of Sm³⁺ ions there was observed a band with maximum of 435 nm caused by charge transfer from 2*p*-sublevel of oxygen ions to free 4s sublevel of Ga^{3+} ions [16]. In^{3+} ions have $5d^{10}$ electron configuration similar to 4d¹⁰ electron configuration of Ga³⁺ ions.

So we can suppose that PL band of $La_{0.98}Sm_{0.02}InO_3$ solid solution with maximum at 435 nm is also due to charge transfer from 2*p*sublevel of oxygen ions to free 5*s* sublevel of In^{3+} ions. Other PL bands intensity of $La_{1-x}Sm_xInO_3$ ($0.015 \le x \le 0.025$) solid solutions investigated depends on Sm^{3+} doping concentration. Under the excitation of 275 nm and 320 nm maximum PL intensity was observed for $La_{1-x}Sm_xInO_3$ solid solution with x=0.020 (Fig. 3a, inset, Fig. 4a). Under the excitation at 405 nm and 470 nm maximum PL intensity was observed for $La_{1-x}Sm_xInO_3$ solid solution with x=0.025 (Fig. 4b and c). This correlates well with the PL spectrum data obtained under the excitation of 268 nm which is presented in work [1].

According to [1,17] PL bands with maxima at 564 nm, 601 nm, 648 nm and 715 nm (Table 2) are caused by 4*f*-electrons of Sm³⁺ ion transitions from the excited ${}^{4}G_{5/2}$ level to the levels with lower energy ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$, and ${}^{6}H_{11/2}$, respectively. PL bands located in wavelength ranges of 550–580 nm and 585–625 nm have 2 clear maxima each while PL band between 630 and 680 nm has 3 clear maxima (Figs. 3a and 4). Such splitting of the PL bands into 2–3 close maxima could be caused by Stark splitting of ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$ multiplets of ${}^{6}H$ term of Sm³⁺ ion by crystal field of La_{1-x}Sm_xInO₃ solid solutions orthorhombically distorted perovskite structure. The clearest triplet splitting is observed for La_{1-x}Sm_xInO₃ solid solution with *x*=0.025 which PL intensity is close to that of La_{1-x}Sm_xInO₃ solid solution with *x*=0.020. In Table 2 Stark splitting of ${}^{6}H$ term magnitudes are calculated by closely located pairs of PL maxima for La_{1-x}Sm_xInO₃ solid solution with *x*=0.020, 0.025.

Energy intervals between two multiplets ${}^{6}H_{5/2}-{}^{6}H_{7/2}$, ${}^{6}H_{7/2}-{}^{6}H_{9/2}-{}^{6}H_{11/2}$ ($\Delta\nu_{mult}$) were calculated as the difference between wavenumbers of the first PL maximum in the short wave region. These energy intervals for La_{0.98}Sm_{0.02}InO₃ solid solution were calculated using its PL spectra under the excitation at 275 nm and they are equal to 1091 cm⁻¹, 1063 cm⁻¹ and 1590 cm⁻¹, respectively. The calculated value of ${}^{6}H_{5/2}-{}^{6}H_{7/2}$ energy interval agree well with the literature data [18]. The values of the energy intervals calculated for other La_{1-x}Sm_xInO₃ solid solutions under different excitation are not significantly different. On Fig. 5 there are presented excitation spectrum (λ_{mon} =450 nm) of solid solutions spectrum (λ_{mon} =602 nm) of solid solution with approximate

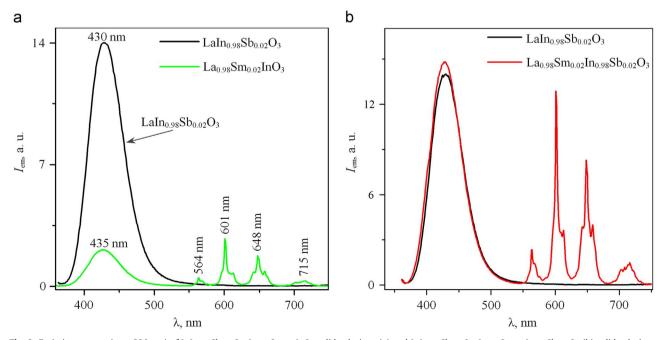


Fig. 6. Emission spectra (λ_{ex} = 320 nm) of Laln_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}lnO₃ solid solutions (a) and Laln_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}ln_{0.98}Sb_{0.02}O₃ (b) solid solutions.

E.K. Yukhno et al. / Journal of Luminescence 182 (2017) ■■■-■■■

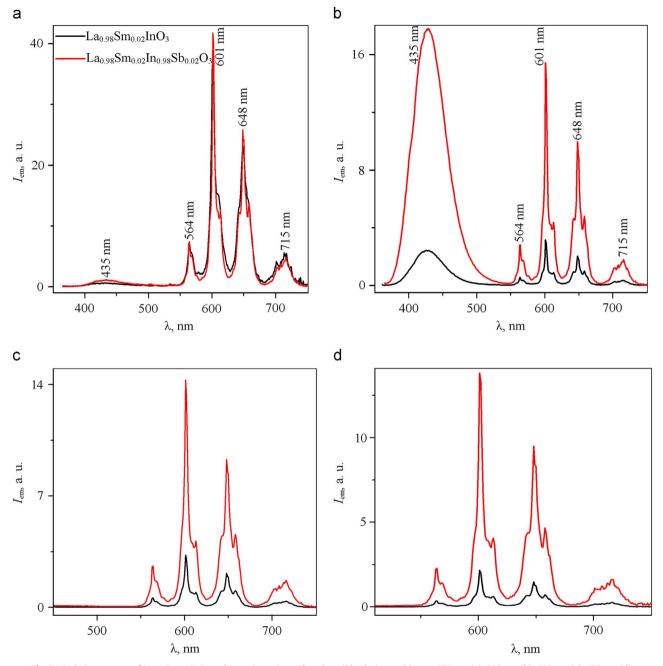


Fig. 7. Emission spectra of $La_{0.98}Sm_{0.02}InO_3$ and $La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ solid solutions with $\lambda_{ex} = 275$ nm (a), 320 nm (b), 405 nm (c), 470 nm (d).

composition is $La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$. As only insignificant part of Sm³⁺ and Sb³⁺ ions are in impurity phase this solid solution can be identified as $La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$. Excitation spectrum of solid solution of nominal composition LaIn_{0.98}Sb_{0.02}O₃ (Fig. 2b inset, Fig. 5) consists of only one band of high intensity with maximum at 324 nm. That band overlaps with the excitation band of solid solution of nominal composition of La_{0.98}Sm_{0.02} In_{0.98}Sb_{0.02}O₃ with maximum at 321 nm (Fig. 5) and excitation band of undoped LaInO₃ with maximum at 330 nm (Fig. 2b). The excitation band of highest intensity in the excitation spectrum of La_{0.98}Sm_{0.02}InO₃ solid solution has maximum at 265 nm (Fig. 2a) though there is no similar band in excitation spectrum of LaIn_{0.98}Sb_{0.02}O₃ (Fig. 5). In the excitation spectrum of $LaIn_{0.98}Sb_{0.02}O_3$ the band between 290 and 370 nm is almost symmetrical so there is only one excitation band in this wavelength interval. PL spectrum (λ_{ex} =320 nm) of LaIn_{0.98}Sb_{0.02}O₃

(Fig. 6a and b) between 350 nm and 750 nm consists of only one almost symmetrical band with maximum at 430 nm $(\nu = 23256 \text{ cm}^{-1})$. Stokes shift for this PL band was calculated using the excitation maximum (30864 cm^{-1}) and emission maximum (23256 cm⁻¹) and is equal to 7608 cm⁻¹. This magnitude slightly differs from the literature magnitude of the Stokes shift for Sb^{3+} ions in ScBO₃ (7900 cm⁻¹) [5]. Calculated in this work excitation and PL bands maxima and Stokes shift for solid solution of nominal composition of LaIn_{0.98}Sb_{0.02}O₃ (324 nm, 430 nm, 7608 cm⁻¹, respectively) differ slightly from those of In³⁺ photoluminescence in LaInO₃ (328 nm, 426 nm, 7013 cm⁻¹, respectively) obtained in [2] and present work (330 nm, 425 nm, 6774 cm⁻¹, respectively). According to [19] energy transfer from sensitizer ions to activator ions is allowed in the case of the overlap of sensitizer PL band and activator absorption (excitation) band. LaInO₃ co-doped with Sb^{3+} and Sm^{3+} ions meets this condition. After excitation of 320 nm LaIn_{0.98}Sb_{0.02}O₃ solid solution exhibits Sb^{3+} emission with maximum at 430 nm (Fig. 6a) while $La_{0.98}Sm_{0.02}InO_3$ has excitation band with peak at 408 nm is referred to Sm³⁺ ion (Fig. 2a). Fig. 7 show PL spectra of La_{0.98}Sm_{0.02}InO₃ solid solution doped with only Sm³⁺ ions and solid solution of nominal composition of La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ co-doped with Sb^{3+} and Sm^{3+} ions after excitation of 275, 320 nm, 405 nm and 470 nm. From spectra presented at Fig. 7 $(\lambda_{ex}=320, 405, 470 \text{ nm})$ it is obvious that PL intensity of $La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ sample containing both Sm³⁺ and Sb³⁺ ions is significantly higher than that of La_{0.98}Sm_{0.02}InO₃ sample containing no Sb^{3+} ions. It can be explained by sensitizing effect of Sb^{3+} ions on Sm^{3+} photoluminescence solid solution. Although we can't exclude that the reason could be higher PL of Sm³⁺ and Sb^{3+} ions in La_{1-v}Sm_vSbO₃ matrix than in LaInO₃-based matrix. In accordance to that it is possible that PL intensity of samples containing both Sm^{3+} and Sb^{3+} ions is mainly due to impurity phase PL, but not that of main phase. For final answer to that guestion further research is needed.

4. Conclusion

The results show that $La_{0.98}Sm_{0.02}InO_3$ exhibits the strongest emission among La_{1-x}Sm_xInO₃ (x=0.010, 0.015, 0.020, 0.025) solid solution after the excitation at 275 nm and 320 nm. For excitation in visible region (405 nm and 470 nm) the highest PL intensity was observed for La_{0.975}Sm_{0.025}InO₃. PL bands located in the wavelength ranges in 550-580 nm, 585-625 nm and 630-680 nm split by crystalline field into 2-3 clear maxima. The magnitudes of Stark splitting of ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$ multiplets of ${}^{6}H$ term of Sm³⁺ ion vary from 93 cm⁻¹ to 326 cm⁻¹. Excitation spectrum of sample of nominal composition of LaIn_{0.98}Sb_{0.02}O₃ consists of only one band of high intensity with maximum at 324 nm. LaIn_{0.98}Sb_{0.02}O₃ sample shows a PL band with maximum at 430 nm referred to Sb^{3+} ion and $La_{0.98}Sm_{0.02}InO_3$ sample shows excitation band with maximum at 408 nm referred to Sm³⁺ ion. These results demonstrate that for the sample of nominal composition of La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ the condition of effective absorbed energy transfer from sensitizer (Sb³⁺) to activator (Sm³⁺) which is required for sensitizing effect of Sb^{3+} on Sm^{3+} is met. It was established that PL bands intensity of spectra obtained after λ_{ex} =320, 405 and 470 nm for La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ sample with small amount ($\approx 5\%$) of La_{1-y}Sm_ySbO₃ impurity is much

higher than that of single-phased La_{0.98}Sm_{0.02}InO₃ solid solution. Such a significant La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ PL intensity increase could be caused by sensitizing effect of Sb³⁺ on Sm³⁺ photoluminescence. Although it can't be excluded that the reason could be higher PL of Sm³⁺ and Sb³⁺ ions in impurity La_{1-y}Sm_ySbO₃ matrix than in main phase LalnO₃-based matrix. In accordance to that it is possible that PL intensity of samples containing both Sm³⁺ and Sb³⁺ ions is mainly due to impurity phase PL, but not that of main phase.

Acknowledgments

Financial support of bilateral Belarus-Latvia program is greatly acknowledged.

References

- [1] X. Liu, J. Lin, Solid State Sci. 11 (2009) 2030.
- [2] N. Laksminarasimhan, U.V. Varadaraju, Mater. Res. Bull. 41 (2006) 724.
- [3] An Tang, D. Zhang, L. Yang, X. Wang, Optoelectron. Adv. Mater. 5 (10) (2011) 1031.
- [4] L.I. van Steensel, S.G. Bokhove, A.M. van de Craats, J. de Blank, G. Blasse, Mater. Res. Bull. 30 (11) (1995) 1359.
- [5] E.W.J.L. Oomen, L.C.G. van Gorkom, W.M.A. Smit, G. Blasse, J. Solid State Chem. 65 (1986) 156.
- [6] L. Chen, G. Yang, J. Liu, X. Shu, G. Zhang, Y. Jiang, J. Appl. Phys. 105 (2009) 013513.
- [7] L. Chen, Y. Jiang, S. Chen, G. Zhang, C. Wang, G. Li, J. Lumin. 128 (2008) 2048.
 [8] L. Chen, X. Deng, S. Xue, A. Bahader, E. Zhao, Y. Mu, H. Tian, S. Lü, K. Yu, Y. Jiang,
- [6] L. Chen, X. Deng, S. Xue, A. Bahader, E. Zhao, Y. Mu, H. Han, S. Lu, K. Yu, Y. Jiang, S. Chen, Y. Tao, W. Zhang, J. Lumin. 149 (2014) 144.
- [9] L. Chen, A. Luo, X. Deng, S. Xue, Y. Zhang, F. Liu, J. Zhu, Z. Yao, Y. Jiang, S. Chen, J. Lumin. 143 (2013) 670.
- [10] L. Chen, A.Q. Luo, Y. Zhang, X.H. Chen, H. Liu, Y. Jiang, S.F. Chen, K.J. Chen, H. C. Kuo, Y. Tao, G.B. Zhang, J. Solid State Chem. 201 (2013) 229.
- [11] M.P. Shaskolskaya, Crystallography, in: Handbook for Universities, Vysshaya shkola: Moscow, Russia, 1976, 391 p.
- [12] S. Krupicka, The Physics of Ferrites and Related Magnetic Oxides, Mir: Moscow, Russia, 1976, 325 p.
- [13] JCPDS 03-065-2426.
- [14] JCPDS 00-034-1130.
- [15] J. Kaur, D. Singh, N.S. Suryanarayana, V. Dubey, J. Disp. Technol. 99 (2016) 1.
- [16] X. Liu, J. Lin, J. Mater. Chem. 18 (2007) 221.
- [17] I.N. Kandidatova, Physicochemical Properties of Solid Solutions of Gallates, Indates of Rare-Earth Elements with Perovskite Structure (Ph.D. Thesis), Minsk, Sept. 2014.
- [18] R. Karlin, Magneto-Chemistry, Mir: Moscow, Russia, 1989, 400 p.
- [19] G. Blasse, Mater. Chem. Phys. 16 (1987) 201.