

Introduction to "Nanofinder-S"

3D Scanning Confocal Microscope with Spectrometer

Alexei Kuzmin

E-mail: a.kuzmin@cfi.lu.lv

Principle of Confocal Microscopy

A type of light microscopy in which a point of illumination is projected or rastered over a specimen, and the reflected illumination is screened through an exit aperture in order to eliminate light from out-of-focus planes.

Nanofinder-S

Before

Nanofinder-S

www.solartii.com

Simultaneous / Multifunctional Analysis:

- Optical and Confocal Microscopy
- Raman Measurements
- Luminescence Measurements
- OD, 1D, 2D & 3D High-speed I maging and Spectroscopy

Main components:

- 1. Inverted microscope (bandpass 400-850 nm)
- 2. CCD for microscope
- 3. Laser confocal microscope unit with photomultiplier tube (PMT)
- 4. Scanning unit with galvanometer mirror scanners (X and Y)
- 5. Opticomechanical unit
- 6. Monochromator-spectrograph
- 7. CCD for spectrograph
- 8. PMT for spectrograph
- 9. Reference PMT
- 10. Laser He-Cd: 441.6 nm, 70 mW (up to 3 lasers possible)
- **11. Computer and electronics**

Nanofinder-S modular optical layout

Inverted Nikon ECLIPSE TE2000-S microscope

- Works in Reflection & Transmission
- High-performance Objectives Plan Fluor 10X/0.30 Plan Fluor 40X/0.75 CF Plan Apo 100X/0.95
- Coupled with color CCD camera Kappa DX 20 H
 - SONY ICX 285 CCD Sensor
 - 2/3" Interline, Progressive Scan
 - · 1384 x 1032 pixel
 - 0.0016 Lux at 10 sec integration
 - 12 bit digital
 - Signal-to-noise ratio 63 dB

	10x	40x	100x
Video Image size (µm)	890 × 660	222 × 165	89 × 66
Confocal Image size (µm)	1100 × 1320	275 × 330	110 × 132

SCANNING UNITS

Scanning unit with galvanometer mirror scanners (X and Y)
 110 μm × 132 μm (*with 100x objective*)
 spacial optical resolution 200 nm

2. Piezo-scanner (Z)
0 - 80 µm (*with 100x objective*)
spacial optical resolution 500 nm

OPTICOMECHANICAL UNIT (OMU)

- Optimized optics:
- Polarizers:
- Zoom beam expander:
- Edge filters positioner:
- Interference filters positioner: six-position
- Confocal pinhole:

- **Glan-Taylor prism (excitation and detection channels)** magnification factor 1.8 - 7.2 three-position

400-850 nm

- variable from 0 to 1.5 mm
- Laser beam attenuator: VND filter

MONOCHROMATOR-SPECTROGRAPH MS5004i

- Configuration:
- Focal length:
- Ports:
- Flat field:
- Grating mounts:
- Spatial resolution:
- Slit control:

vertical

- 520 mm
- 1 input, 2 output (CCD & PMT)
- 28 mm x 10 mm
- **4-position turret**
- 0.008 µm
- 0 2.0 mm, step size 0.5 mm

MONOCHROMATOR-SPECTROGRAPH MS5004i

 Gratings (grooves/mm): 	150	600	1800	75
 Blaze wavelength (nm): 	500	500	500	Echelle
Dispersion (nm/mm):	12.7	3.17	0.94	0.149 - 0.504
Spectral resolution (nm):	0.24	0.06	0.02	0.0052 – 0.0176
Wavelength accuracy (±nm):	0.32	0.12	0.04	0.013 – 0.047
Wavelength repeatability (±nm):	0.089	0.022	0.007	0.0016

Digital Slow Scan CCD Camera PROSCAN HS-101H for spectrograph

- A high sensitive back-thinned CCD sensor 1024 × 58 pixels
- Spectral response range from 200 nm to 1100 nm
- Pixel size 24 x 24 µm
- Digitalization rate up to 1 MHz
- ADC 14 bit, correlative double sampling
- Peltier cooling with thermo stabilization & water cooling
- 10/100 Ethernet data transfer

3 PHOTOMULTIPLIER TUBES (PMT)

- PMT for laser confocal microscope
- PMT for spectrograph
- Reference PMT

Hamamatsu R928

Wide Spectral Response

185 to 900 nm

High Cathode Sensitivity Luminous Radiant at 400nm

250 A/Im 74 mA/W

High Anode Sensitivity (at 1000V)Luminous2500 A/ImRadiant at 400nm7.4.105 A/W

Low Drift and Hysteresis

LASER

COMPUTER / ELECTRONICS

He-Cd 441.6 nm, 70 mW

Pentium IV 3GHz, 1GB RAM, 3D Video card with 128 MB RAM,

. . .

For more information please contact:

SOLAR TII, LTD

15/2, Akademicheskaya str., Minsk 220072, Republic of Belarus

Tel: +375 (17) 284 02 00 Fax: +375 (17) 284 06 38 *E-mail: laser@it.org.by*

Internet: www.solartii.com

EXAMPLES OF APPLICATIONS

- Imaging of Silicon Gratings for Scanning Probe Microscopy "calibration"
- 3D Confocal Microscopy "optical tomography"
- Optical Lithography "information storage"
- 2D Confocal Imaging and Raman Spectroscopy "chemical phase mapping"

Calibrating Silicon Gratings for Scanning Probe Microscope

3D Confocal Microscopy

Atmospheric pressure chemical vapour deposition (APCVD) of ZnO microcrystals on Si substrate

110 x 132 x 30 µm

2D optical image

Imaging and Raman Spectroscopy of ZnO needles

Materials for Optical Information Storage

Optical Data Storage

CD-ROM

Track pitch = 1.6 μm

Track pitch = 1.6 μ m

Images size: 20×24 μ m

$a-WO_3 \rightarrow cryst-WO_3$ phase transition under laser irradiation

Objective 40×; laser power: 70 mW for writing, 12 mW for reading; detection by CCD.

Confocal Imaging and Raman Spectroscopy

CdWO₄: video mode 66×89 μm

Confocal mode: 110×132 µm

Confocal mode: 11×13 µm

2D Chemical Phase Mapping in Oxide Films

2D confocal mode: 110 \times 132 μm

Raman mapping at 520 cm⁻¹

2D Chemical Phase Mapping in Oxide Films

2D Confocal Imaging and Raman Spectroscopy of Films

Confocal Imaging and Raman Spectroscopy of Magnons in Antiferromagnetic Compounds

2D Confocal Imaging and Raman Spectroscopy of Glasses

Confocal mode: 275 \times 330 μm

2D & 3D Imaging of Technological Process

Get more at

http://www.dragon.lv/exafs/confocal_microscopy.htm

