13.06.2024.

EXPLORING SUBSTRATE-INDUCED PHASE TRANSITION IN METALLIC CHROMIUM FOIL USING X-RAY ABSORPTION SPECTROSCOPY

LATVIJAS UNIVERSITĀTES CIETVIELU FIZIKAS INSTITŪTS

INSTITUTE OF SOLID STATE PHYSICS UNIVERSITY OF LATVIA

Vitalijs Dimitrijevs, Alexei Kuzmin

Vitalijs.Dimitrijevs@cfi.lu.lv

International Workshop on Recent Advances and Future Trends in EXAFS Spectroscopy

June 13-14, 2024, Riga, Latvia

OUTLINE

- 1. Anisotropy in metals
 - Samples
 - Experiment
 - Reverse Monte Carlo Simulations
 - Data analysis
 - Results
- 2. Thin chromium layer on a substrate

ANALYZED SAMPLES

Wedig et al (2013), https://doi.org/10.1002/zaac.201300091

XAS EXPERIMENT AND OVERALL ANALYSIS ROUTE

Rehr et al, https://doi.org/10.1103/RevModPhys.72.621 Timoshenko et al (2014), Doi: 10.1088/0953-8984/26/5/055401.

RMC FIT FOR MOLYBDENUM FOIL (BCC) AT 10 AND 300 K

RMC FIT FOR TITANIUM FOIL (HCP) AT 10 AND 300 K

DATA ANALYSIS AFTER RMC

A - number of atoms in a component x_c - interatomic distance σ^2 - MSRD

How to define atomic pair types? 2

First way: From final structure

Second way: From equilibrium structure Analysis of coordinates

$$MSRD = \frac{1}{N} \sum_{k}^{N} (R_k - \bar{R})^2$$

MSRD DEPENDENCE ON TEMPERATURE FOR Cr-Cr ATOMIC PAIRS (BCC)

(cfi

Literature: MSD from phonon density of states

Peng, L.-M.; Ren, G.; Dudarev, S. L.; Whelan, M. J. Debye– Waller Factors and Absorptive Scattering Factors of Elemental Crystals. *Acta Crystallogr. A* **1996**, *52* (3), 456–470. https://doi.org/10.1107/S0108 76739600089X Singh, N.; Sharma, P. K. Debye-Waller Factors of Cubic Metals. *Phys. Rev. B* **1971**, *3* (4), 1141–1148. https://doi.org/10.1103/PhysR evB.3.1141.

MSRD DEPENDENCE ON TEMPERATURE FOR Zn-Zn ATOMIC PAIRS (HCP)

c/a = 1.86

https://doi.org/10.1107/S010876739600089X

MSRD DEPENDENCE ON TEMPERATURE FOR Ti-Ti ATOMIC PAIRS (HCP)

MSRD DEPENDENCE ON TEMPERATURE FOR Zr-Zr ATOMIC PAIRS (HCP)

 $MSRD(X_1-X_2) = MSD(X_1) + MSD(X_2) - DCF$

c/a = 1.59 c/a_i = 1.63

CONCLUSION ABOUT FIRST PART

- The use of partial Radial Distribution Functions (RDF) enabled the analysis of overlapping components, corresponding to various atomic pair types
- The anisotropy of local lattice dynamics in hcp metals is influenced by c/a ratio and can be observed from MSRD dependence on temperature

THIN CHROMIUM LAYER ON A SUBSTRATE

LATVIJAS UNIVERSITĀTES CIETVIELU FIZIKAS INSTITŪTS

INSTITUTE OF SOLID STATE PHYSICS University of Latvia

NOTHING WAS WRONG UNTIL...

XRD ANALYSIS BY RIETVELD REFINMENT

RMC FIT FOR CHROMIUM FOIL (BCC) AT 10 AND 300 K

RMC FIT FOR CHROMIUM FOIL (HCP) AT 10 AND 300 K

CONCLUSIONS FROM SECOND PART

- Substrate-induced phase transition from bcc to hcp phase was detected in thin chromium foil on polyester substrate. This effect is analogous to that produced by the application of negative pressure
- Contrary to the anisotropic local lattice dynamics typically observed in hexagonal close-packed metals, hcp chromium exhibits isotropic behavior

THANKS FOR YOUR ATTENTION!

LATVIJAS UNIVERSITĀTES CIETVIELU FIZIKAS INSTITŪTS

INSTITUTE OF SOLID STATE PHYSICS UNIVERSITY OF LATVIA

The financial support from the Latvian Council of Science project No. lzp-2022/1-0608 is greatly acknowledged.