

23.09.2021.

MAGNETRON SPUTTERED YHO THIN FILM OXYDATION DYNAMICS AND OPTICAL PROPERTIES

M.ZUBKINS, I. AULIKA, E. STRODS, V. VIBORNIJS, L. BIKSE, A. SARAKOVSKIS, J. PURANS

INSTITUTE OF SOLID STATE PHYSICS, UNIVERSITY OF LATVIA

THIN FILMS LABORATORY

LATVIJAS UNIVERSITĀTES CIETVIELU FIZIKAS INSTITŪTS

INSTITUTE OF SOLID STATE PHYSICS University of Latvia

Latvian Council of Science

OUTLINE

- Motivation
- Introduction in rare-earth oxyhydrides
- Experimental details
- Results:
 - In-situ transmittance measurements
 - X-ray diffraction
 - Electron microscope images
 - Spectroscopic ellipsometry
 - X-ray photoelectron spectroscopy (depth profiling)
- Conclusions

MOTIVATION

nsulating gap

Inner pane (with low-e coating)

• Yttrium and other rare-earth (RE) metal oxy-hydrides (YHO, REHO) are a new class of inorganic **mixed-anion materials** [1]

- They exhibit a **photochromic effect and a light-induced resistivity change** at room temperature and ambient pressure [2]
- Photochromic YHO thin films can be prepared by the simply exposing reactively $(Ar+H_2)$ sputtered metallic $B-YH_2$ films to air [3]. However, it has not been directly measured when the oxidation mostly occurs after or during (due to residual oxygen) the deposition of YH₂ films?
- The aim of this presentation to show the oxidation dynamics of yttrium hydride films during and after deposition process, as well as optical properties.
- Latvian Council of Science FLPP project: Thin films of rareearth oxy-hydrides for photochromic applications
- [1] Nature communications 9.1 (2018) 1-15
- [2] Applied Physics Letters 111 (2017) 103903.
- [3] Sol. Energy Mater. Sol. Cells 177 (2018) 106

Double-paned insulated glass unit (IGU)

Thin Films Laboratory

YTTRIUM OXYHYDRIDE

Cryst. Growth Des. 2019, 19, 2574–2582

Physical Review Materials 4.2 (2020): 025201.

YH₂ fcc Fm-3m

PHOTOCHROMIC EFFECT

UV-Blue light irradiation

Physical Review Materials, 4(2), 025201 (2020)

Appl. Phys. Lett. 111, 103903 (2017)

EXPERIMENTAL DETAILS - YHO DEPOSITION

Vacuum coater Sidrabe G500M

Sputtering conditions:

- rectangular magnetron: balanced;
- o target:
 - Y (99.95 purity);
 - dimensions 150 mm × 75 mm × 2 mm thick.
- working pressure 3 20 mTorr (changed by a throttle valve):
 - Ar flow 30 sccm;
 - H₂ flow 16 sccm.
- constant average power regime (200 W);
- pulsed-DC power supply P-DC-EP05 EnerPulse 5 kW:
 - •frequency 80 kHz;
 - ■Off time 2.5 µs;
- spectrometer: CMOS detector, StarLine AvaSpec-ULS2048CL-EVO

YHO deposition:

- \circ soda-lime glass and Ti substrates;
- substrate temperature: RT (without intentional heating);
- deposition time: 20 min;
- \circ distance from target to substrate: ~10 cm (facing the target axis);

DEPOSITED YHO SAMPLES

Sample	Sputtering	Voltage (V)	Thickness
No.	pressure		(nm)
	(mTorr)		
1	3.0	302	330
2	6.0	299	209
3	6.5	299	305
4	7.0	299	357
5	7.5	297	378
6	8.0	298	428
7	9.0	296	442
8	10.0	299	419
9	12.0	296	398
10	20.0	290	462

IN-SITU TRANSMITTANCE MEASUREMENT

IN-SITU TRANSMITTANCE

Transmittance spectra of the deposited samples immediately after the deposition.

IN-SITU TRANSMITTANCE

Transmittance spectra of the deposited samples <u>immediately after the deposition</u>.

Transmittance spectra of the deposited samples after 30 min in O_2 (\approx 3 Torr).

TIME CONSTANT

XRD OF YHO

The surface morphology of the films is less dense at higher sputtering pressures.

CROSS-SECTION IMAGES OF YHO FILMS

HV det mode HFW PW mag 20.00 kV STEM 3+ HAADF 1.73 μm 1.12 nm 120 000 ×

OPTICAL CONSTANTS

The refractive index n (a, c) and extinction coefficient k (b, d) as functions of photon energy and sputtering pressure. Refractive index n and extinction coefficient k at 400 nm wavelength as functions of sputtering pressure.

Pressure, mTorr

OPTICAL BAND GAP

Tauc band gap E_g (fitting parameter of TLO) as a function of the sputtering pressure.

OPTICAL GRADIENT

Optical depth profile (at 1.669 eV or 742.8 nm) of thin films sputtered at different pressures.

XPS - DEPTH PROFILING

XPS Survey 1 Scan, 27.2 s, 200µm, CAE 150.0, 1.00 eV

Fi2p3 Combin

01s Combine

Atomic % Profile

1 Scan, 0.050 s, 200µm, CAE 20.0, CAE 20.0

7.0 mTorr

YHO film

110

100-

90·

80

70-

50

Atomic % (%) 60-

DEPTH PROFILING

YHO films on the Ti substrates

Ti substrate

8.0 mTorr

YHO film

100

90

80

60

50

Atomic % Profile

1 Scan, 0.050 s, 200µm, CAE 20.0, CAE 20.0

23.09.2021 EMRS Fall conference 2021 Institute of Solid State Physics

Ti substrate

Ti2p3 Combined

O1s Combined

Y3d5 Combined

- The oxidation of YH_{2-x} films during and after deposition occur more rapidly when the higher sputtering pressure is used.
- The most of the oxidation happens when oxygen (or air) is introduced into a vacuum chamber intentionally.
- The lattice of YHO films expands with the deposition pressure due the higher oxygen concentration which is promoted by the less dense structure.
- There is the transition from metallic to semiconducting/insulating YHO films when the deposition pressure is increased (at 7.0 mTorr in our case).
- The transparent films in the visible light range exhibit an optical gradient throughout the thickness of the films due to the nonhomogeneous composition.

Thanks for Your attention !!!

Financial support was provided by Latvian Council of Science FLPP project no. lzp-2020/2-0291.

Latvian Council of Science

Thin Films Laboratory

