OPTICAL BAND GAP DETERMINATION ISSUES FOR AMORPHOUS AND CRYSTALLINE METAL-OXIDE THIN FILMS

Ilze Aulika, Martins Zubkins, Jelena Butikova, Juris Purans

LATVIJAS UNIVERSITĀTES CIETVIELU FIZIKAS INSTITŪTS

INSTITUTE OF SOLID STATE PHYSICS University of Latvia

OUTLINE

- Introduction
- Tauc's method
- Unified methodology: sigmoid-Boltzmann function
- Johs-Herzinger generalized critical point model
- Examples

INTRODUCTION

SEMI-CLASSICAL FRAMEWORK

Optical absorption coefficient α (at the photon energy $E = \hbar \omega$) of an electron being excited from the valence (VB) to the conduction (CB) band, is subjected to the transition rate

$$W_{VB\to CB} = \frac{2\pi}{\hbar} |M|^2 g(E)$$

M - coupling transition matrix element g(E) - joint electron-hole density of states

 $\Rightarrow \text{Negligible or no changes in the electron wave-vector } \overrightarrow{k} (\overrightarrow{k_f} \approx \overrightarrow{k_i})$ Direct or vertical optical or first-order optical transitions $\Rightarrow \text{Changes in the electron wave-vector } \overrightarrow{k} (\overrightarrow{k_f} \approx \overrightarrow{k_i})$

Indirect or non-vertical or phonon-assisted optical transitions

DIRECT AND INDIRECT OPTICAL TRANSITIONS IN CRYSTALLINE SEMICONDUCTORS

$\alpha_{\rm dir}(E < E_{\rm gap}) = 0$

Direct

$$\alpha_{\rm dir}(E \ge E_{\rm gap}) \propto (E - E_{\rm gap})^{1/2}$$

Determination of E_{gap} : extrapolating the linear least squares fit of α^2 to zero [" α^2 versus E" plot].

ΚS	Γ
Ū	
Э	
<u>p</u>	
≥	
ra	
\Box	

(a) No Coulomb attraction is considered which, notably at lower 7, enhances $\alpha_{dir}(E)$

(b) Extrinsic absorption (due to defect states and impurities) may originate $\alpha_{dir}(E < E_{gan}) \neq 0$

(c) Parabolic-like $\alpha_{dir}(E \ge E_{gab}) \propto (E - E_{gab})^{1/2}$ shape is valid only at

 $\vec{k} \approx 0$, that could not be valid in certain band structures and, definitely, is not applicable when $E \gg E_{gap}$

Indirect

$$\alpha_{ind}(E < E_{gap}) = 0$$

$$\alpha_{ind}(E \ge E_{gap}) \propto (E \pm \hbar \Omega - E_{gap})^2$$

Determination of E_{gap} : : extrapolating the linear least squares fit of $\alpha^{1/2}$ to zero [" $\alpha^{1/2}$ versus E" plot].

 $\hbar\Omega$ denotes the energy of a phonon being emitted (+ $\hbar\Omega$) or absorbed (- $\hbar\Omega$): in most cases, the contribution owing to t Ω can be disregarded

 $\begin{array}{l} \alpha_{dir}(E)-steep\ rise\ profiles\\ \alpha_{ind}(E)\ -\ absorption\ tails\ due\ to\ higher\\ frequency\ (or\ multi-)\ phonon\ absorption \end{array}$

Both $\alpha_{dir}(E)$ and $\alpha_{ind}(E)$ – and corresponding Egap values – are affected by the local T, the presence of strong electric or magnetic fields, and the physical–chemical characteristics (including doping–alloying effects) of the semiconductor material.

TAUC'S METHOD

RESTRICTIONS TO THE OPTICAL ABSORPTION PROCESSES

1. Absence of \vec{k} conservation

2. Momentum transition matrix element is constant(for phonon-assisted transitions)

3. Density of *e*⁻ states close to VB and CB extrema is ~E^{1/2} (similar to crystalline case)

Linear least squares fit of $(\alpha \cdot E)^{1/2}$ to zero [" $(\alpha \cdot E)^{1/2}$ versus E" plot] Linear least squares fit of $(\alpha/E)^{1/2}$ to zero [" $(\alpha/E)^{1/2}$ versus E" plot]

Tauc approuch $\Rightarrow E_{gap} = E_{Tauc}$

Cody approuch $\Rightarrow E_{gap} = E_{Cody}$

J. Tauc, R. Grigorovici, & A. Vancu, Optical properties and electronic structure of amorphous germanium. *phys. stat. sol.* **15**:2 (1966) 627, <u>https://doi.org/10.1002/pssb.19660150224</u> G.D. Cody, B.G. Brooks, & B. Abeles, Optical absorption above the optical gap of amorphous silicon hydride. *Solar Energy Mater* **8**:1-3 (1982) 231, <u>https://doi.org/10.1016/0165-1633(82)90065-X</u>

E_{Tauc} AND $E_{Cody} INFLUENCED$ BY THE $\alpha(E)$ SPECTRUM AND ITS POSTERIOR DATA ANALYSIS

For amorphous semiconductors E_{gap} can be defined by taking E at which the α reaches 10^3 or 10^4 cm⁻¹, rendering the so-called isoabsorption E_{03} or E_{04} bandgaps.

This procedure is useful only when $\alpha(E) \ge 10^3 \text{ cm}^{-1}$ - for samples with thicknesses in the (sub-) μ m range.

Regardless of the method chosen all of them are influenced by the $\alpha(E)$ spectrum and its posterior data analysis.

- α(E) is susceptible to
 - \Rightarrow experimental aspects (measurement details, sample thickness etc.)
 - \Rightarrow mathematical expression chosen to its calculation
 - E_{gap} values can differ by many meV

Tauc equation

$$\alpha h\nu = a(h\nu - E_g)^m$$

m = {0.5; direct allowed;

1.5; direct forbidden

2; indirect allowed 3} indirect forbidden

OTHER MATHEMATICAL EXPRESSIONS

Mott-Davies approach

direct opt. transitions:

$$\alpha h\nu = a(h\nu - E_g)^{\frac{d}{n}-1}$$
$$\alpha h\nu = a(h\nu - E_g)^{\frac{d_\nu}{n_\nu} + \frac{d_c}{n_c}}$$

 α – absorption coefficient

indirect opt. transitions:

- a constant
- hv photon energy
- d effective dimensionality
- n dispersion relation for CB (c) and VB (v)

Inflection-point method from time-dependent perturbation theory

 α

$$\alpha \propto \left(\Delta E_g\right)^{1/2} \left[1 - \frac{2}{\pi} \tan^{-1}\left\{\frac{W + \Delta E_g - hv}{\Gamma}\right\}\right]$$

W - minimum energy distance between the CB and VB $\Delta E_{\rm g}$ – the amount of the shifted bandgap energy Γ – broadening parameter (freq. independent)

The E_{g} determined by inflection-point method indicates the energy around which the transition from low to high absorption is centered.

Inverse logarithmic derivative method

natural logarithm of Tauc equation yields

$$\ln(\alpha h\nu) = m \ln a + m \ln(h\nu - E_g)$$

by differentiating with respect to hv (a does not depend on energy hv)

$$\frac{d\,\ln(\alpha h\nu)}{d\,(h\nu)} = m\frac{1}{h\nu - E_g}$$

inversion of equation yields

$$\frac{1}{\frac{d\ln(\alpha h\nu)}{d(h\nu)}} = \frac{1}{m}(h\nu - E_g)$$

by transforming the left-hand-side, a numerical derivative is obtained

$$\frac{\Delta(h\nu)}{\Delta\ln(\alpha h\nu)} \approx \frac{1}{m}(h\nu - E_g)$$

I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, and L. Engström, Band-gap widening in heavily Sn-doped In2O3, Phys. Rev. B 30 (1984) 3240, https://doi.org/10.1103/PhysRevB.30.3240 The overview of other mathematical expressions taken form the lecture of Ramunas Nedzinskas lectrue, ZnMgO thin films for deep ultraviolet applications: structural and optical approach, 17.02.2021

A. R. Zanatta, Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination, Scientific Reports | (2019) 9:11225 | https://doi.org/10.1038/s41598-019-47670-y

EXAMPLE

(1) limited energy ranges ($\Delta E \le 100 \text{ meV}$) provids good linear fits (2) Both direct and indirect E_{gap} values can be achieved from the α^2 and $\alpha^{1/2}$ versus E plots.

Whole process (including graphical representation, fitting range, and goodness-of-fit) is susceptible to the operator's intervention.

Sigmoid-Boltzmann function is simple and consistent with $\hat{f}_{\underline{b}}$ the optical processes regarding the experimental determination of E_{gap}.

UNIFIED METHODOLOGY: SIGMOID-BOLTZMANN FUNCTION

SIGMOID-BOLTZMANN FUNCTION: SBF

$$\alpha(E) = \alpha_{\max} + \frac{\alpha_{\min} - \alpha_{\max}}{1 + \exp\left(\frac{E - E_0^{\text{Boltz}}}{\delta E}\right)}$$

 α_{min} (α_{max}) - minimum (maximum) absorption coefficient E_0^{Boltz} - energy coordinate at which α is halfway between α_{min} and α_{max} δE - associated with the slope of the sigmoid curve

Advantages:

- Simple
- Comprise ~500 meV energy range (instead of only ~100 meV in case of linear fits)

Disadvantages: provides good fit as long as

c-GaAs

150

50

c-Ge

α (cm⁻¹)

Boltzmann

Reproduced a high portion of the α(E) spectrum

Boltzmann

• variables $\alpha_{\min,max}$, E_0^{Boltz} , and δE have little uncertainty \Rightarrow some deviations at high photon energies

c-Si

Boltzmann

COMPARISON OF DIFFERENT METHODS

A. R. Zanatta, Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination, Scientific Reports 9 (2019) 11225, <u>https://doi.org/10.1038/s41598-019-47670-y</u>

COMPARISON OF DIFFERENT METHODS

A. R. Zanatta, Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination, Scientific Reports 9 (2019) 11225, <u>https://doi.org/10.1038/s41598-019-47670-y</u>

SIGMOID-BOLTZMANN FUNCTION

Numerous experimental results suggests existance of

- Central energy E_0^{Boltz} around which most of the optical transitions take place
- Its corresponding distribution δE ownes the differences in the nature of the bandgaps, presence of disorder etc.

$$E_{gap}^{Boltz} = E_0^{Boltz} - n_{dir-ind}^{Boltz} \times \delta E$$

Onsets: $n_{dir}^{Boltz} \sim 0.3 \quad n_{amorp}^{Boltz} \sim 3.6$ $n_{indir}^{Boltz} \sim 4.3$

 $E_{\rm gap}{\rm 's}$ with an accuracy (absolute error) below 10 meV

1 - below bandgap (no absorption)

2 - absorption onset (due to defects and/or phononassisted processes)

3 - high absorption edge (maximum of the optical absorption rate)

M. Zubkins, J. Gabrusenoks, G. Chikvaidze, I. Aulika, J. Butikova, R. Kalendarev, L. Bikse, "Amorphous ultra-wide bandgap ZnO_x thin films deposited at cryogenic temperatures", J. of Applied Physics 128 (2020) 215303, https://doi.org/10.1063/5.0028901

DIRECT FIT OF COMPLEX DIELECTRIC FUNCTION

REFLECTION, TRANSMISSION AND MAIN ELLIPSOMETRIC ANGLE FITTING

TAUC-LORENTZ & CODY-LORENTZ OSC

JOHS-HERZINGER GENERALIZED CRITICAL POINT MODEL

JOHS-HERZINGER GENERALIZED CRITICAL POINT MODEL - JHGCPM

This is oscillator model combines highly flexible function shape with Kramer-Kronig consistent properties.

The ε_2 part consists of four polynomials splines connected end-to-end. Each spline connects smoothly with the adjacent spline, forming a single, continues function: $n \equiv oscillator \#$

+ $i \sum_{j=m+1}^{j=m+P} A_j \int_0^\infty \delta(E' - E_j) \Phi_j(E, E', \sigma_j) dE'$

 $\varepsilon(E) = 1 + i \sum_{j=1}^{m} \int_{E_{min}}^{E_{max}} W_j(E') \Phi_j(E, E', \sigma_j) dE'$

C. M. Herzinger, B. D. Johs, patent "Dielectric functionparametric model, and method of use", 1998, US005796983A

P. Petrik, Parameterization of the dielectric function of semiconductor nanocrystals, Physica, B. Condensed Matter 46:46 (2014) 2, https://doi.org/10.1016/i.physb.2014.03.065

Psemi-Tri

EXAMPLE: ZnO₂ FABRICATED AT CRYOGENIC T

Depos. T	Transmission data	Ellipsomety data					
(°C)	E _g (eV)	E _{cody} (eV)	E _{gap} (eV) applying JHGCPM	E_{gap} (eV) applying SBF to whole $\alpha(E)$	E _{gap} (eV) applying SBF to selected α(E)	E _{gap} (eV) applying PWL3 to α(E)	
+38	~ 3.43	3.117 ± 0.002	$\textbf{3.49}\pm\textbf{0.06}$	3.50 ± 0.20	3.41 ± 0.09	3.41 ± 0.02	
-42	~ 3.41	3.191 ± 0.022	$\textbf{3.39}\pm\textbf{0.02}$	2.73 ± 0.27	3.05 ± 0.13	$\textbf{3.38} \pm \textbf{0.01}$	
-103	~ 4.97	4.65 ± 0.40	4.76 ± 0.24	-	-	4.92 ± 0.01	

M. Zubkins, J. Gabrusenoks, G. Chikvaidze, I. Aulika, J. Butikova, R. Kalendarev, L. Bikse, "Amorphous ultra-wide bandgap ZnO_x thin films deposited at cryogenic temperatures", J. of Applied Physics 128 (2020) 215303, https://doi.org/10.1063/5.0028901

CONCLUSION

WR WR AR=0.5 WR AR=0.5 WR AR=0.5 PR=0.5 PR=0.5 VT+k_(k:x_2) VT+k_(k:x_2)

y = A2

v = A1

=(A2-A1)/4dx

Boltzmann functions provides good fits as long as:

- they are reproduced at high portion of the $\alpha(E)$ spectrum, and
- they presented the variables $\alpha_{min,max}$, E_0^{Boltz} , and δE with little uncertainty
 - <u>Drawbacks</u>: some deviations at high photon energies may appear for materials, which absorption coefficient increases with increase of $E > E_0^{Boltz}$.

Johs-Herzinger generalized critical point model provides good fits as long as

• they are reproduced at high portion of the $\alpha(E)$ spectrum

Drawbacks: complex dielectric function, software of certain complexity are needed

Alternatives:

- Boltzmann function: in case the absorption coefficient increases with increase of $E > E_0^{Boltz}$, narrower spectral region should be analysed avoiding the «critical» regions of absorption.
 - Piecewise linear three point method can be considered a relatively good comprise, too.

Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508 project CAMART² CAMART²

Financial support was provided by Latvian Council of Science FLPP projectno.lzp-2020/2-0291

Latvian Council of Science

Laboratory of Spectroscopy

20th - 23rd September

Thank you for your attention & welcome to collaborate!

Ilze Aulika

Development Project Manager and Researcher

Phone: +371 25241686

Kengaraga 8, LV-1063, Riga, Latvia

ilze.aulika@cfi.lu.lv

www.cfi.lu.lv

2021 Fall Meeting