

<sup>a</sup>Institute of Solid State Physics, University of Latvia, Riga, Latvia

## Introduction

The impact of the local atomic structure and lattice dynamics on the thermochromic properties of copper molybdate (CuMoO<sub>4</sub>) and its solid solutions (CuMo<sub>1-x</sub> $W_xO_4$  and Cu<sub>1-v</sub>Zn<sub>v</sub>MoO<sub>4</sub>) was studied using X-ray absorption spectroscopy (XAS) and resonant X-ray emission spectroscopy (RXES). The experimental results were supported by the reverse Monte-Carlo (RMC) simulations coupled with ab initio multiple-scattering calculations.

The thermochromic effect of CuMoO<sub>4</sub> below room temperature is caused by the  $\alpha$ -to- $\gamma$  structural phase transition whereas above room temperature the  $\alpha$ phase remains unchanged but thermal disorder plays an important role. The control of the  $\alpha$ -to- $\gamma$  phase transition temperature was achieved by chemical doping. Hysteretic type of the transition together with its tunability could be useful for an application of the material as a cheap and robust indicator for monitoring storage or processing conditions of temperature-sensitive products. **References to original papers are provided.** 



Science Program" with the support of the Latvian National Commission for UNESCO and the Latvian Academy of Sciences.

LIETIŠĶO PĒTĪJUMU



## **Conclusions:**

- symmetry materials.
- and axial O atoms in  $CuO_6$  octahedra occurs.