19th International Young Scientist Conference "Developments in Optics and Communications 2023"

ABSTRACT BOOK

Optical Materials and Phenomena

Laser Physics and Spectroscopy

Communications

Biophotonics

Vision Science

WWW.DOCRIGA.LV

EVELOPMENTS in

ptics

nmunications 2023

and

oril 13-14

81st International Scientific Conference of the University of Latvia 2023

Development of X-ray sensitive hybrid organic-inorganic systems utilizing tungstate nanoparticles for radiation detection applications

 $\underline{\rm Pudzs\ Kaspars}^{1,*},$ Pudza ${\rm Inga}^1,$ Tokmakovs Andrejs 1, Kalinko Aleksander¹, Kuzmin Alexei 1

¹Institute of Solid State Physics, University of Latvia E-mail: kaspars.pudzs@cfi.lu.lv

The active field of research currently involves the development of new radiation detectors using nanomaterials. Hybrid materials, which consist of an organic matrix combined with high-Z nanoparticles, are highly promising for radiation detection applications.

This study focuses on the development of X-ray sensitive hybrid organic-inorganic systems utilizing tungstate nanoparticles (AWO₄, where A = Ca, Zn, Sr, Cd) and a P3HT:PCBM blend. The nanoparticles were synthesized using the hydrothermal method and analyzed using X-ray diffraction and scanning electron microscopy. The X-ray detectors were composed of five layers (ITO/PEDOT:PSS/NPs:P3HT:PCBM/BPhen/Al) and operated without a bias voltage. The detectors were tested using synchrotron radiation, and the addition of high-Z element

nanoparticles improved the detectors' X-ray attenuation efficiency. The high dynamic range of the fabricated detectors allowed for recording X-ray absorption spectra and performing imaging experiments.

These hybrid detectors with different tungstate nanoparticles offer a cost-effective X-ray detection solution that can be optimized for a particular energy range by selecting the A-cation element.

Acknowledgments

The financial support of the Latvian Council of Science project No. lzp-2019/1-0071 is greatly acknowledged.

References

[1] I. Pudza, K. Pudzs, A. Tokmakovs, N. R. Strautnieks, A. Kalinko, A. Kuzmin, Nanocrystalline CaWO₄ and ZnWO₄ tungstates for hybrid organic-inorganic X-ray detectors, Materials 16 (2023) 667, DOI:10.3390/ma16020667.