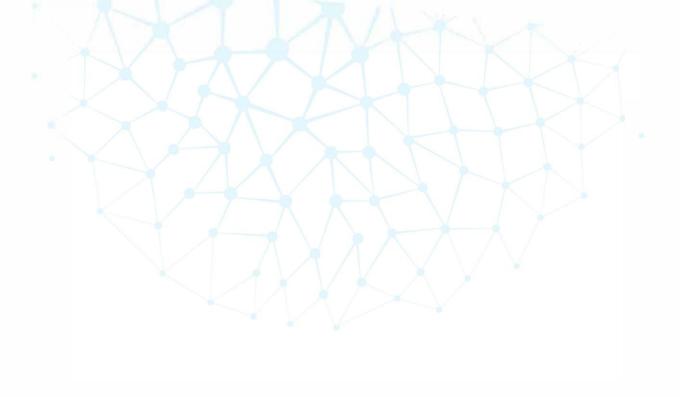


Joint International Conference Functional Materials and Nanotechnologies and

Nanotechnology and Innovation in the Baltic Sea Region

FM&NT – NIBS 2022

Riga, Latvia July 3 – July 6, 2022


BOOK OF ABSTRACTS

INSTITUTE OF SOLID STATE PHYSICS University of Latvia

UNIVERSITY OF LATVIA INSTITUTE OF CHEMICAL PHYSICS

Edited by Līga Grīnberga, Anatolijs Šarakovskis Institute of Solid State Physics, University of Latvia 8 Ķengaraga Street, LV-1063, Riga, Latvia E-mail: issp@cfi.lu.lv www.cfi.lu.lv

Edited by Gunta Kunakova University of Latvia, Jelgavas str. 1, Riga E-mail: lu@lu.lv www.lu.lv

ISBN 978-9934-23-645-7 (for pdf files) ISBN 978-9934-23-644-0 (for USB files)

Po-61

THE USE OF TUNGSTATE NANOPARTICLES IN HYBRID X-RAY DETECTORS

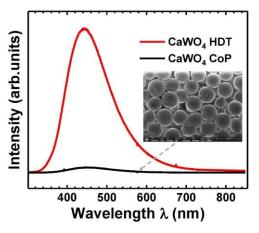
Inga Pudza, Kaspars Pudzs, Georgijs Bakradze, Janis Cipa, Andrejs Tokmakovs, Alexei Kuzmin

Institute of Solid State Physics, University of Latvia

Keywords

Tungstates, nanoparticles, XRD, SEM, X-ray absorption spectroscopy

Actuality and aim


Tungstates of divalent metals form a large class of materials with various applications including but not limited to scintillators, photocatalysis, supercapacitors and sensors. The high value of the atomic number of tungsten (Z=74) and the possibility to vary the atomic number of the second cation in a wide range (Z=12 for Mg, Z=56 for Ba) make tungstates attractive for the development of novel hybrid organic-inorganic X-ray detectors.

Methods

In this study, scheelite (A=Ca, Sr) and wolframite-type (A=Zn, Cd) tungstates with different crystallinity were prepared using co-precipitation (CoP) and hydrothermal (HDT) synthesis. Nano- and polycrystalline powders were characterized by XRD, scanning electron microscopy (SEM), X-ray absorption spectroscopy (XAS), Raman spectroscopy and X-ray excited optical luminescence (XEOL).

Results

Different synthesis parameters affect the size and morphology of nanoparticles (NPs). CoP at room temperature results in agglomerated NPs with an average size of 15-30 nm, but using citric acid as a capping agent the average size of NPs was smaller than 5 nm. However, XEOL is suppressed in NPs with low crystallinity because of high lattice defect concentration (see figure). In XAS spectra, size-induced local structure relaxations are observed which are more pronounced in NPs of wolframite-type. The HDT synthesis results in highly crystalline NPs with improved XEOL.

XEOL of two CaWO₄ samples. A SEM micrograph of CaWO₄ microspheres is shown in the inset.

Conclusions

We show that the best sensitivity to X-rays is determined by a subtle interplay between particle size and their crystallinity.

Acknowledgements

Financial support by the Latvian Council of Science project no. lzp-2019/1-0071 is acknowledged.