Investigation of precipitate in an austenitic ODS steel containing a carbon-rich process control agent

Tim Gräninga,*, Michael Rietha, Anton Möslanga, Alexei Kuzminb, Andris Anspoksb, Janis Timoshenkob, Arturs Cintinsb, Juris Puransb

a Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein Leopoldshafen 76344, Germany
b Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga LV-1063, Latvia

\textbf{Abstract}

Austenitic oxide dispersion strengthened (ODS) steels are one of the candidates as a structural material for high-temperature applications in future power plants. To guarantee the necessary high production yield, the production process was improved in terms of reproducibility and scalability, by adding a process control agent (PCA) during the milling process. Due to this addition and the inherent change of the production process, the produced powder was thoroughly investigated using transmission electron microscopy and X-ray absorption spectroscopy methods to reveal the formation of chromium-rich carbides adjacent to titanium. Hence, less titanium was available to form the preferred complex nano-oxides the addition of carbon to the system influences the formation of precipitates severely in terms of their amount and size. The mechanical alloying process itself was unaffected by the addition of a PCA, and mixing and alloying of used elements still occurs.

\section{Introduction}

Ferritic oxide dispersion strengthened (ODS) steels have been developed as a possible material for structural applications in future fusion power plants \cite{1–7}. Due to the inferior behavior under irradiation, austenitic steels were disregarded for applications which expose the material to such conditions. However, in recent years the interest in austenitic ODS steels was rekindled, due to its corrosion resistance, the high-temperature stability of the microstructure, and an exhibited high ductility in a tensile test at 700 °C \cite{8–12}.

Nevertheless, problems with the adhesion of ductile austenitic powder in a high energy Simoloyer mill lead to a severely decreased powder production yield \cite{13}. Preliminary in-house tests have shown that an added process control agent (PCA) helps to keep the powder production yield at 100% during mechanical alloying by reducing the adhesion of the powder to other components inside the mill while using a novel two-step milling process, described elsewhere \cite{14}. However, the addition of a carbon-containing PCA changes the milling process and adds carbon as an element to the process \cite{15}. This paper focuses on the investigation of the impact of carbon on the microstructure and the formation of nanoparticles inside the powder particles. Powder particles after the first and second milling step were examined to gain insights about the formed microstructure after the mechanical alloying process was finished. A subsequent heat treatment of powder particles was applied to initiate the formation of precipitates, followed by an examination of the microstructure using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) as complementary methods to determine the effect of carbon on the formation and stability of ODS particles in mechanically alloyed powder. In addition, this study is performed to provide a baseline for understanding the influences of a subsequent extrusion process and a long-term annealing on the microstructure and formation of precipitates.

\section{Materials and methods}

A novel two-step mechanical alloying process was conducted to produce an austenitic ODS steel powder \cite{14}. The first step consisted of blending a ferritic base powder, labeled as PCA-0, with Fe\textsubscript{3}Y and elemental chromium powder followed by mechanical alloying in a Simoloyer mill for 40 h. This way, a ferritic ODS powder was produced, hereinafter referred to as PCA-1. This powder was then mixed and mechanically alloyed with elemental nickel powder and stearic acid. Stearic acid was added as a carbon-containing PCA to reduce the adhesion of nickel and of the formed austenitic powder particles to the milling container. Thus, this addition enables a powder production yield of 100% in the second milling step. The duration of the second milling step was between 10 and 12 h, and the attained powder is hereinafter termed as PCA-2. To investigate the precipitate formation...
and thermal stability of the microstructure, the powder PCA-2 was annealed at 1100 °C for 40 h. In comparison, non-annealed powders of PCA-1 and PCA-2 were investigated to examine the homogeneity and distribution of elements. Specifications of the used powders are summarized in Table 1 and Table 2 provides information of the determined chemical composition. The amount of oxygen was identified applying a carrier gas hot extraction method, while carbon was determined using a carbon/ sulfur analyzer. Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied for all other elements after dissolving the powder particles in a mixed acid. A triple determination method was used for each analyzing method and all powders. For that reason, a standard deviation of the detected average chemical composition is given in Table 2. The amount of carbon measured in PCA-2 was lower than expected. The addition of 0.5 wt. % of stearic acid should have given 0.38 wt. % of carbon. The stearic acid also coats the milling balls and the milling vessel, which explains the reduced carbon content in PCA-2. However, due to the abundance of carbon in PCA-2 the results of the experiments are not significantly affected by the lower amount of carbon.

2.1. Microscopy

Powder particles embedded in resin and subsequently polished were studied by scanning electron microscopy (SEM). Grinding and polishing were carried out with a series of progressively finer grain papers (from 320 to 1200 grit) SiC polishing papers. After that, a final polish using a diamond polishing suspension of 1 µm was performed. The sample was cleaned with isopropanol and a thin layer of gold was deposited on the polished surface to decrease electrical charging of the resin while recording EDX mappings.

The measurements were carried out using a Zeiss Merlin field-emission gun SEM with GEMINI II electron optics and an acceleration voltage of 200 kV applying high-angle annular dark-field imaging (HAADF) technique in scanning TEM (STEM) mode for EDX analysis.

2.2. X-ray absorption spectroscopy

The XAS experiments were performed on the bending-magnet XAFS beamline at ELETTRA synchrotron (Trieste, Italy) [16]. The X-ray radiation was monochromatized by a 40% detuned Si(111) double crystal monochromator for the Ti K-edge (4966 eV), and without detuning for the Y K-edge (17,038 eV). The intensities of the incident and transmitted beams were measured by two ionization chambers filled with argon and krypton gases. X-rays emitted by the sample were measured by a Si drift fluorescence detector.

For XAS measurements, ODS steel powders were sealed in quartz glass ampoules with outer and inner diameters of 6 and 4 mm, respectively. For the examination of powders in the mechanically alloyed state, approximately 1 g of each powder was placed in the quartz glass ampoules under argon atmosphere. More powder was used for heat treated samples to reduce the effect of oxidation while heating with residual oxygen. After filling, the ampoules were vacuum sealed without oxidizing the powder.

The quartz glass ampoules were mounted consecutively on a sample holder and were measured in fluorescence mode at the Y K-edge. For measurements performed at the Ti K-edge, the ampoules were opened and the powder was placed in Kapton tape because glass absorbed almost all of the signal. Yttrium (GoodFellow, 99.9%, thickness 0.025 mm) and titanium (GoodFellow, 99.6% +, thickness 0.004 mm) foils were used for energy scale calibration and as references. In addition, a set of reference compounds was measured. We used commercial microcrystalline Ti2O3 (Alrich, 99.99%), anatase TiO2 (Alrich, 99.8%) and cubic c-Y2O3 (Alrich, 99.99%). Nanosized Y2O3 (nano-Y2O3),

Two preparation methods for powder samples for transmission electron microscopy (TEM) have been used:

- Non-heat treated powder particles were embedded in resin. Focused ion beam preparation of individual powder particles was performed to obtain a TEM lamella. To remove the generated FIB damage on the surface of the lamella a flash polishing for 200 ms with a solution of 20% H2SO4 and 80% CH3OH was performed.
- Heat treated powder particle of PCA-2 were pressed with a uniaxial pressure of 1000 MPa at 700 °C for one hour and afterward cooled down to room temperature in a vacuum environment. The discs with a thickness of around 1 mm were ground and polished to a thickness of around 200 µm. For the last step, a diamond polishing suspension of 1 µm was used. Afterward, electro-polishing in a TENUPOL V device by Struers with a mixture of 20% H2SO4 and 80% CH3OH as an electrolyte was conducted at 20 °C. In the end, the samples were cleaned with an argon ion beam using a Precise Ion Polishing System (PIPS).

TEM studies were carried out using an FEI Tecnai 20 FEG analytical microscope with an accelerating voltage of 200 kV applying high-angle annular dark-field imaging (HAADF) technique in scanning TEM (STEM) mode for EDX analysis.

Table 1

<table>
<thead>
<tr>
<th>Powder</th>
<th>Comments</th>
<th>Average particle size / µm</th>
<th>Milling time / hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA-0</td>
<td>Base Alloy</td>
<td>140</td>
<td>–</td>
</tr>
<tr>
<td>PCA-1</td>
<td>PCA-0 + Fe3Y + Cr</td>
<td>undefined</td>
<td>40</td>
</tr>
<tr>
<td>PCA-2</td>
<td>PCA-1 + Ni + stearic acid</td>
<td>undefined</td>
<td>10-12</td>
</tr>
<tr>
<td>Fe3Y</td>
<td>Added before 1st milling step</td>
<td>400</td>
<td>–</td>
</tr>
<tr>
<td>Cr</td>
<td>Added before 1st milling step</td>
<td>250</td>
<td>–</td>
</tr>
<tr>
<td>Ni</td>
<td>Added before 2nd milling step</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>Added before 2nd milling step</td>
<td>10</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Powder</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>W</th>
<th>Mn</th>
<th>Ti</th>
<th>V</th>
<th>Y</th>
<th>O</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA-0</td>
<td></td>
<td></td>
<td>13.1</td>
<td>1.95</td>
<td>0.4</td>
<td>0.3</td>
<td>0.19</td>
<td>–</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>PCA-1</td>
<td>79.8</td>
<td>17.7</td>
<td>–</td>
<td>1.69</td>
<td>0.39</td>
<td>0.21</td>
<td>0.19</td>
<td>0.19</td>
<td>0.23</td>
<td>0.2</td>
</tr>
<tr>
<td>PCA-2</td>
<td>67.3</td>
<td>16.31</td>
<td>14.10</td>
<td>1.51</td>
<td>0.36</td>
<td>0.16</td>
<td>0.16</td>
<td>0.18</td>
<td>0.13</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe3Y</td>
<td>67.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.16</td>
<td>0.16</td>
<td>0.18</td>
<td>0.13</td>
<td>0.3</td>
</tr>
<tr>
<td>Cr</td>
<td>–</td>
<td>–</td>
<td>Bal.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>32.6</td>
<td>0.30</td>
</tr>
<tr>
<td>Ni</td>
<td>–</td>
<td>–</td>
<td>Bal.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.19</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.8</td>
<td>0.2</td>
<td>0.3</td>
<td>0.03</td>
<td>0.03</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.002</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* 0.5 wt. % stearic acid is used as a PCA.
* Calculated value of carbon after adding a PCA is 0.38.
and the crystallites size was determined by the Rietveld method. Mi-
used in [18]. The phase composition of reference samples was con-
fitred by X-ray powder diffraction measurements.

The obtained X-ray absorption spectra were processed using the
Demeter [19] and EDA [20] software packages, using a conventional
procedure [21] to extract the X-ray absorption near-edge structure
(XANES) and the extended X-ray absorption fine structure (EXAFS).

3. Results and discussion

The two-step mechanical alloying process was evaluated using EDX
method. Fig. 1 shows the ferritic ODS powder, PCA-1, after 40 h of
milling. The elemental distributions of selected elements are depicted
right next to a secondary electron (SE) image.

Even though chromium was gas-atomized together with all other
elements in the prealloy, small enrichments with a lamellar shape and a
size in the range from 1 to 5 µm were observed (see chromium dis-
tribution map). Other elements, like tungsten or titanium, which also
tend to accumulate together with oxygen or carbon were not found in
the form of clusters. The appearance of chromium clusters during the
first mechanical alloying step can be connected to its abundance, and,
thus, a sequestering together with carbon and/or oxygen is highly
presumable due to the low Gibbs energy, even though no carbon or
oxygen clusters have been found [22–24]. Therefore, it can be inferred
that the small enrichments were caused by the addition of elemental
chromium powder, which was not completely dissolved in the austen-
ritic matrix. Nevertheless, the main focus of the first 40 h of milling is
to homogeneously distribute and to dissolve the added yttrium in the
ferritic matrix material. Recent studies have shown that 20 to 40 h
(depending on the used milling parameters) are sufficient to achieve
that [25,26]. No formation of yttrium-containing precipitates was ob-
erved.

The novel part is the second milling step, where ferritic ODS powder
is blended and milled with nickel powder and stearic acid, which acts as
a PCA. The microstructure of PCA-2 powder after the second milling
step is represented in Fig. 2. This examination was conducted to de-
termine the distribution of the added nickel powder after a mechanical
alloying process of 12 h. In comparison with the Cr and Fe distribution
images, regions lacking nickel, highlighted by arrows, can be identified.
These areas were found to be two different types. The first are small
regions located in relatively big powder particles, while the second type
are small unalloyed powder particles of powder PCA-1. These regions or
particles have a size of roughly 4–6 µm. In accordance with Suryanar-
ayana [15], the milling process can be considered as finished after a
lamellar spacing between the different powders (PCA-1 and Ni) of less
than 1 µm is attained.

After 12 h of mechanical alloying, SEM EDX analyses showed that
the defined lamellar spacing is not obtained for PCA-2. Usually, the
powder is heated during the shaping process at temperatures of around
1000 °C, which enables diffusion processes to minimize the chemical
gradients and support the formation of a uniform austenitic ODS steel.
During the heating, the lamellar spacing will get reduced because of
diffusion processes, which are strongly driven by a chemical gradient.
Longer mechanical alloying times would also increase the number of
impurities by wear and friction and a higher amount of stearic acid
would be necessary to maintain a powder production yield of 100%. An
optimized milling time needs to be defined in future research and was
not part of this study. However, due to the mentioned processing route,
a milling time of 12 h for a second milling step is sufficient to form
austenitic steel during a subsequent heat treatment.

TEM images of powder PCA-2 provide deep insights into the mi-
crostructure. A HAADF STEM image of a lamella, which was cut out
from one of the powder particles shown in Fig. 2, is imaged on the left-
hand side in Fig. 3. Elemental distribution images of the red framed
area are presented on the right-hand side and reveal the formation of
titanium-rich precipitates, it is important to emphasize that
titanium was not added as an elemental powder and was originally
present in PCA-0. Thereby, it can be inferred that a few titanium en-
richments have formed clusters during the mechanical alloying process
or that the precipitates formed during the powder production process
(gas-atomization). In the first-mentioned case, titanium must have
diffused during the mechanical alloying process, which only can be
explained by locally heated zones in the powder, more vacancies and a
lower activation energy due to the energy input by mechanical alloying
[27,28]. The fact that titanium diffuses 7.6 times faster than iron in the
austenitic matrix supports the theory of diffused titanium during the
mechanical alloying process [29]. In the second-mentioned case, tita-
nium was slightly oxidized during the gas-atomization and was not
dissolved during the mechanical alloying process.

It was assumed that the formed precipitates are carbides or oxides
due to a low Gibbs free energy of formation of those phases. However,
no higher concentration of carbon was measured near titanium and
only a slightly increased intensity of oxygen compared to the
surrounding matrix material was detectable after separating the O-Kα and the Cr-Lα peak in the EDS spectra. This suggests that the titanium precipitates are partly oxidized. However, this analysis is not conclusive, as oxygen and carbon both present difficulties in detection via this method. This is because oxygen and carbon are both light elements and often are found as surface contaminations of the sample. Additionally, the attenuation length for the C-Kα x-ray energy was calculated to be approximately 50 nm inside the steel matrix. Assuming that the thickness of a TEM foil is less than 100 nm, this still leads to a strongly attenuated signal for carbon. This can lead to a low peak to background ratio, which may have happened in this case. Therefore, whether or not part of the titanium in the as-milled condition exists in metallic form cannot be confirmed. All other elements, except chromium, are homogeneously distributed. However, a part of the titanium must be dissolved into the matrix, which will lead to the formation of small Y-Ti-O rich precipitates after a heat treatment was applied. To investigate if the formation of smaller Y-Ti-O rich precipitates was triggered, powder samples were heat treated for 40 h at 1100 °C.

The microstructure of PCA-2 after the heat treatment is shown in Fig. 4 and reveals that a formation of rather big precipitates (dark in STEM image) with a diameter of around 100–200 nm occurred. Two of the particles were analyzed using an EDX line scan and are labeled “A” and “B” in the HAADF STEM and the oxygen distribution image. The graphs of the two line scans are shown below the TEM images. An increased amount of carbon in the bigger precipitates was identified, which can be explained by the addition of the carbon-rich stearic acid as a PCA. These bigger precipitates were found to be free of yttrium. In terms of carbon, a rise in the number of counts from 200 to 300, and from 2100 to 2800, for precipitates A and B respectively, is measured. That means that the introduced carbon has formed and facilitated the formation of Cr(Ti)-O(C) clusters. Also, a correlation between Ti, Cr, and O without carbon was detected.

A comparison of the element distribution maps in Fig. 4 shows that Y precipitates smaller than 20 nm are well correlated with Ti. Due to this observation, the assumption that part of the titanium dissolves into the matrix material during mechanical alloying and forms precipitates together with yttrium during a subsequent annealing was confirmed.

To determine the extent of the influence of the carbon-containing PCA on the formation of the particles and their chemical composition, XAS methods were applied.

As can be seen in Fig. 5, yttrium is present mainly in the metallic state after mechanical alloying, and the most of yttrium is oxidized after heat treatment. This conclusion can be drawn from the comparison of the Y K-edge XANES for PCA-2 samples with reference materials Y foil and polycrystalline Y₂O₃ (c-Y₂O₃), Y₂TiO₅, Y₂Ti₂O₇, and nanosized Y₂O₃ (nano-Y₂O₃, 3–4 nm). Both pre-edge (feature A) and main edge (feature B) of the Y K-edge XANES of PCA-2 samples have the same energy as those of the references, suggesting a metallic state of yttrium after MA and its oxidation upon annealing at 1100 °C. The Y K-edge XANES spectrum of the PCA-2 sample after annealing has the same shape as to those of Y₂TiO₅ and nanosized Y₂O₃. At the same time, it misses post-edge double-peak feature C, characteristic for microcrystalline Y₂O₃, as well as the features D, characteristic for Y₂Ti₂O₇.

As mentioned, titanium also contributes to the increased mechanical properties at elevated temperatures by forming stable oxides, thus helping to boost the overall properties of the material [30]. However,
the complex oxides containing both yttrium and titanium are the more favorable ones due to their low surface energy and an excellent lattice match between the austenite matrix and the nanoparticles [31,32]. This may help to mitigate the coarsening at high operating temperatures. The most mentioned and preferred stoichiometric composition is Y₂Ti₂O₇ [31,33–37]. But in the presence of carbon, titanium is also likely to form a stable carbide phase like the often found M₂₃C₆ phase [38–40]. For that reason, it was important to examine the behavior of titanium in as-milled and heat-treated condition when a carbon-rich PCA was added.

The Ti K-edge XANES and EXAFS spectra of PCA-2 samples before and after heat treatment are shown in Fig. 6. The spectra of untreated PCA-2 samples have the same features and absorption edge (except for the amplitude due to a nanosize) to that of TiO₂ (Anatase), indicating that titanium is mostly oxidized. This result is best seen in Fourier transforms of the EXAFS, where a very pronounced peak at 0.8–2.0 Å corresponds to the first coordination shell of Ti in oxides Ti-O. After annealing, the Ti K-edge spectrum of PCA-2 sample transforms to the one having the same XANES absorption edge values and the same features in XANES and EXAFS as Ti₂O₃, which corresponds well to TEM data where titanium is incorporated into the chromium and oxygen-rich precipitates. At the same time, this result does not exclude that a small fraction (around 10%) of Ti can be incorporated in Y-Ti-O oxides, but a strong correlation with Ti₂O₃ reference spectra indicates that the majority of Ti is in Ti³⁺ oxides.

4. Conclusions

Austenitic ODS steel has been investigated to reveal the impact of a carbon-containing PCA on the microstructure after milling and subsequent heat treatment. A novel two-step mechanical alloying process was applied and led to a powder production yield of 100%, which facilitates a scalable and reproducible process. We found that yttrium is well distributed after mechanical alloying and is only slightly oxidized. After annealing at 1100 °C yttrium and titanium form oxides. A majority of titanium is oxidized after mechanical alloying and is only slightly oxidized. After annealing at 1100 °C yttrium and titanium form oxides. A majority of titanium is oxidized after mechanical alloying, however, bigger precipitates and enriched zones of titanium are also observable. After the annealing process titanium is present in a combination with yttrium...
forming smaller precipitates but also is traceable in bigger oxides and carbides next to chromium. It can be assumed that this leads to a reduced amount of titanium available for the formation of Ti-Y-O cluster. This indicates that a carbon-containing PCA has a negative influence on the formation of oxide nanoparticles in ODS steel. A more precise determination of its role in the processed material will be a subject of future studies.

Acknowledgment

The work of M. Parish and Rainer Ziegler is gratefully acknowledged. Thanks are also due to the team of the chemical laboratory at the KIT for performing the chemical analysis. The help of the beamline staff at ELETTRA (project 20140052) synchrotron radiation facility is acknowledged. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.

Funding

This work has been carried out within the framework of the German Helmholtz Association and has received funding from the topic “Materials Research for the Future Energy Supply”.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.nme.2018.05.005.

References

