Technical Digest of

Frontiers in Electronic Materials

A collection of extended abstracts of the Nature Conference
Frontiers in Electronic Materials, June 17th to 20th 2012, Aachen, Germany
Technical Digest of

Frontiers in Electronic Materials

Binary and ternary metal oxides as emergent materials for non-volatile memory applications are receiving an increasing amount of scientific attention due to the promising scalability, retention and switching characteristics of this material class [1]. The key role of oxygen non-stoichiometry and oxygen-deficient oxide-phases as the underlying mechanism of the resistance change has been recognized for many different oxide systems (e.g. TiO$_2$, Ta$_2$O$_5$, SrTiO$_3$). It is becoming widely accepted that the resistance switching process in SrTiO$_3$ is related to the movement and creation of oxygen vacancies and the associated electron doping. However, direct experimental reports of the redox-reaction induced by an electric field are rare [2].

In this contribution, the distribution of oxygen vacancies in a switched memristor fabricated from epitaxial Fe-doped SrTiO$_3$ will be investigated by spatially resolved x-ray absorption near-edge structure (XANES). SrTi$_{0.95}$Fe$_{0.05}$O$_3$ was grown epitaxially by pulsed laser deposition (PLD) on a conducting Nb: SrTiO$_3$ substrate, and Pt top electrodes were sputter-deposited and structured via optical lithography. XANES measurements at the Fe K-edge with a 7 µm beam spot on the sample were done at beamline ID03 (ESRF, France). Figure 1 compares the Fe K-edge XANES of the virgin thin film to that recorded in the anodic and cathodic regions of an electrocolored single crystal. The cathode was found to contain only Fe$^{3+}$ ions and Fe$^{3+}$-VO complexes in the ratio ~ 70/30, and notably no Fe$^{4+}$ [3]. The almost perfect coincidence of the thin film XANES with that of the reduced cathode implies that the thin film is already oxygen deficient after growth, and that the Fe$^{3+}$/Fe$^{4+}$ redox pair does not serve as an indicator for local resistance changes. The shoulder at 7122 eV excitation energy that marks Fe$^{3+}$-VO complexes is indicated by “S” in figure 1.

![Figure 1: Fe K-edge XANES recorded on the virgin thin film (dots), the cathode region (solid) and the anode region (dash) of an electrocolored Fe-doped SrTiO$_3$ single crystal. The intensity of the shoulder at 7122 eV excitation energy (marked S by the arrow) is a fingerprint of the presence of an oxygen vacancy in the first coordination shell of Fe3. The chemical state of the virgin film – according to the XANES – is similar to that of the cathode, and the Fe centers in the film are primarily cubic Fe$^{3+}$ centers, with a significant percentage of axial Fe$^{3+}$-VO centers.](image-url)
After an electroforming step with a +7V DC voltage applied to the top electrode, the formed memristor can be switched between different resistance states with a bipolar voltage sweep. The current-voltage hysteresis is shown in figure 2(a), the “Set”-state is reached with a negative voltage sweep polarity. A low voltage readout (figure 2(b)) reveals the “Set”-state to show ohmic behavior, while the “Reset”-state shows distinctly non-linear behavior.

A Fe-K edge fluorescence map recorded at 7122 eV excitation energy to maximize the sensitivity to Fe$^{3+}$-VO reveals one location on the electrode pad with increased intensity, corresponding to the filament. Moreover, the Fe$^{3+}$-VO concentration as measured by the intensity of the shoulder S is increased under the whole electrode area as compared to the virgin film. The important consequence is that before breakdown is achieved during the electroforming, a homogeneous front of vacancy enrichment propagates into the material. Furthermore, the Fe K-edge XANES at the filament location is interpreted via full multiple-scattering calculations and indicates oxygen vacancy clustering in the first shell of Fe [4].